Product manual

4114

Universal transmitter

No. 4114V105-UK
From serial no.: 121524001
6 Product Pillars to meet your every need

Individually outstanding, unrivalled in combination

With our innovative, patented technologies, we make signal conditioning smarter and simpler. Our portfolio is composed of six product areas, where we offer a wide range of analog and digital devices covering over a thousand applications in industrial and factory automation. All our products comply with or surpass the highest industry standards, ensuring reliability in even the harshest of environments and have a 5-year warranty for greater peace of mind.

Our range of temperature transmitters and sensors provides the highest level of signal integrity from the measurement point to your control system. You can convert industrial process temperature signals to analog, bus or digital communications using a highly reliable point-to-point solution with a fast response time, automatic self-calibration, sensor error detection, low drift, and top EMC performance in any environment.

We deliver the safest signals by validating our products against the toughest safety standards. Through our commitment to innovation, we have made pioneering achievements in developing I.S. interfaces with SIL 2 Full Assessment that are both efficient and cost-effective. Our comprehensive range of analog and digital intrinsically safe isolation barriers offers multifunctional inputs and outputs, making PR an easy-to-implement site standard. Our backplanes further simplify large installations and provide seamless integration to standard DCS systems.

We provide inexpensive, easy-to-use, future-ready communication interfaces that can access your PR installed base of products. All the interfaces are detachable, have a built-in display for readout of process values and diagnostics, and can be configured via push-buttons. Product specific functionality includes communication via Modbus and Bluetooth and remote access using our PR Process Supervisor (PPS) application, available for iOS and Android.

Our unique range of single devices covering multiple applications is easily deployable as your site standard. Having one variant that applies to a broad range of applications can reduce your installation time and training, and greatly simplify spare parts management at your facilities. Our devices are designed for long-term signal accuracy, low power consumption, immunity to electrical noise and simple programming.

Our compact, fast, high-quality 6 mm isolators are based on microprocessor technology to provide exceptional performance and EMC-immunity for dedicated applications at a very low total cost of ownership. They can be stacked both vertically and horizontally with no air gap separation between units required.

Our display range is characterized by its flexibility and stability. The devices meet nearly every demand for display readout of process signals, and have universal input and power supply capabilities. They provide a real-time measurement of your process value no matter the industry, and are engineered to provide a user-friendly and reliable relay of information, even in demanding environments.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning</td>
<td>4</td>
</tr>
<tr>
<td>Symbol identification</td>
<td>5</td>
</tr>
<tr>
<td>Safety instructions</td>
<td>5</td>
</tr>
<tr>
<td>How to demount system 4000</td>
<td>7</td>
</tr>
<tr>
<td>When front LED lights red / display shows AO.ER</td>
<td>7</td>
</tr>
<tr>
<td>Application</td>
<td>8</td>
</tr>
<tr>
<td>Technical characteristics</td>
<td>8</td>
</tr>
<tr>
<td>Mounting / installation / programming</td>
<td>8</td>
</tr>
<tr>
<td>Applications</td>
<td>9</td>
</tr>
<tr>
<td>PR 45xx display / programming front</td>
<td>10</td>
</tr>
<tr>
<td>Mounting / demounting the PR 45xx</td>
<td>10</td>
</tr>
<tr>
<td>Order</td>
<td>11</td>
</tr>
<tr>
<td>Accessories</td>
<td>11</td>
</tr>
<tr>
<td>Electrical specifications</td>
<td>11</td>
</tr>
<tr>
<td>Visualisation in the 45xx of sensor error detection and input signal outside range</td>
<td>14</td>
</tr>
<tr>
<td>Sensor error detection limits</td>
<td>15</td>
</tr>
<tr>
<td>Error indications</td>
<td>15</td>
</tr>
<tr>
<td>Connections</td>
<td>16</td>
</tr>
<tr>
<td>Block diagram</td>
<td>17</td>
</tr>
<tr>
<td>Configuration / operating the function keys</td>
<td>18</td>
</tr>
<tr>
<td>Routing diagram</td>
<td>20</td>
</tr>
<tr>
<td>Routing diagram, advanced settings (ADV.SET)</td>
<td>22</td>
</tr>
<tr>
<td>Help text overview</td>
<td>23</td>
</tr>
<tr>
<td>Document history</td>
<td>24</td>
</tr>
</tbody>
</table>
Warning

This device is designed for connection to hazardous electric voltages. Ignoring this warning can result in severe personal injury or mechanical damage.

To avoid the risk of electric shock and fire, the safety instructions of this guide must be observed and the guidelines followed. The specifications must not be exceeded, and the device must only be applied as described in the following.

Prior to the commissioning of the device, this installation guide must be examined carefully.

Only qualified personnel (technicians) should install this device. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Warning

Until the device is fixed, do not connect hazardous voltages to the device. The following operations should only be carried out on a disconnected device and under ESD safe conditions:

- General mounting, connection and disconnection of wires.
- Troubleshooting the device.

Repair of the device and replacement of circuit breakers must be done by PR electronics A/S only.

Warning

Do not open the front plate of the device as this will cause damage to the connector for the display / programming front PR 45xx.

This device contains no DIP-switches or jumpers.

SYSTEM 4000 must be mounted on a DIN rail according to DIN EN 60715.
Symbol identification

Triangle with an exclamation mark: Warning / demand. Potentially lethal situations. Read the manual before installation and commissioning of the device in order to avoid incidents that could lead to personal injury or mechanical damage.

The CE mark proves the compliance of the device with the essential requirements of the directives.

The double insulation symbol shows that the device is protected by double or reinforced insulation.

Safety instructions

Definitions

Hazardous voltages have been defined as the ranges: 75 to 1500 Volt DC, and 50 to 1000 Volt AC.
Technicians are qualified persons educated or trained to mount, operate, and also trouble-shoot technically correct and in accordance with safety regulations.
Operators, being familiar with the contents of this manual, adjust and operate the knobs or potentiometers during normal operation.

Receipt and unpacking

Unpack the device without damaging it and check whether the device type corresponds to the one ordered. The packing should always follow the device until this has been permanently mounted.

Environment

Avoid direct sunlight, dust, high temperatures, mechanical vibrations and shock, and rain and heavy moisture. If necessary, heating in excess of the stated limits for ambient temperatures should be avoided by way of ventilation.
The device must be installed in pollution degree 2 or better.

Mounting

Only technicians who are familiar with the technical terms, warnings, and instructions in the manual and who are able to follow these, should connect the device. Should there be any doubt as to the correct handling of the device, please contact your local distributor or, alternatively,

PR electronics A/S
www.prelectronics.com

Mounting and connection of the device should comply with national legislation for mounting of electric materials, i.e. wire cross section, protective fuse, and location.

Descriptions of input / output and supply connections are shown in the block diagram and side label.

The following apply to fixed hazardous voltages-connected devices:

The max. size of the protective fuse is 10 A and, together with a power switch, it should be easily accessible and close to the device. The power switch should be marked with a label indicating that it will switch off the voltage to the device.

Year of manufacture can be taken from the first two digits in the serial number.

UL installation requirements

Use 60/75°C copper conducters only
For use only in pollution degree 2 or better
Max. ambient temperature ... 60°C
Max. wire size. ... AWG 26-14
UL file number ... E231911

Calibration and adjustment

During calibration and adjustment, the measuring and connection of external voltages must be carried out according to the specifications of this manual. The technician must use tools and instruments that are safe to use.
Normal operation
Operators are only allowed to adjust and operate devices that are safely fixed in panels, etc., thus avoiding the danger of personal injury and damage. This means there is no electrical shock hazard, and the device is easily accessible.

Cleaning
When disconnected, the device may be cleaned with a cloth moistened with distilled water.

Liability
To the extent the instructions in this manual are not strictly observed, the customer cannot advance a demand against PR electronics A/S that would otherwise exist according to the concluded sales agreement.
How to demount system 4000

First, remember to demount the connectors with hazardous voltages.

![Picture 1]

Picture 1:
The device is detached from the DIN rail by moving the bottom lock down.

When front LED lights red / display shows AO.ER
PR 4114 is designed as a SIL 2 device with a high safety level. Therefore, a continuous measurement of the outgoing current is carried out on a 4...20 mA and 20...4 mA output signal. If the current output signal is different from the internal calculated output value or the current output is 0 (due to e.g. an open circuit breakage), an error mode switches on the red front LED. This function is not a default option but must be actively selected via the programming menu (S4-20 & S20-4). The error mode can only be reset by switching off and then switching on the supply voltage to the device.
Universal transmitter
4114

• Input for RTD, TC, Ohm, potentiometer, mA and V
• 2-wire supply > 16 V
• FM-approved for installation in Div. 2
• Output for current and voltage
• Universal AC or DC supply

Application
• Linearized, electronic temperature measurement with RTD or TC sensor.
• Conversion of linear resistance variation to a standard analog current / voltage signal, i.e. from solenoids and butterfly valves or linear movements with attached potentiometer.
• Power supply and signal isolator for 2-wire transmitters.
• Process control with standard analog output.
• Galvanic separation of analog signals and measurement of floating signals.
• The 4114 is designed according to strict safety requirements and is thus suitable for application in SIL 2 installations.
• Suitable for the use in systems up to Performance Level "d" according to ISO-13849.

Technical characteristics
• When 4114 is used in combination with the 45xx display / programming units, all operational parameters can be modified to suit any application. As the 4114 is designed with electronic hardware switches, it is not necessary to open the device for setting of DIP-switches.
• A green / red front LED indicates normal operation and malfunction.
• Continuous check of vital stored data for safety reasons.
• 3-port 2.3 kVAC galvanic isolation.

Mounting / installation / programming
• Very low power consumption means units can be mounted side by side without an air gap - even at 60°C ambient temperature.
• Configuration, monitoring, 2-point process calibration and more are accomplished using PR's 45xx detachable displays.
• All programming can be password-protected.
Applications

Input signals:

Current

Voltage

Potentiometer

RTD and lin. R

Connect., wires

TC

Order separately: 5910 CJC connector.
See the connection drawing on page 16.

Output signals:

Analog, 0/4...20 mA and voltage

Supply:

21.6...253 VAC
or
19.2...300 VDC
PR 45xx display / programming front

Functionality
The simple and easily understandable menu structure and the explanatory help texts guide you effortlessly and automatically through the configuration steps, thus making the product very easy to use. Functions and configuration options are described in the section “Configuration / operating the function keys”.

Application
- Communications interface for modification of operational parameters in 4114.
- Can be moved from one 4114 device to another and download the configuration of the first unit to subsequent units.
- Fixed display for readout of process data and status.

Technical characteristics
- LCD display with 4 lines:
 Line 1 (H=5.57 mm) shows the input signal.
 Line 2 (H=3.33 mm) shows the selected engineering unit.
 Line 3 (H=3.33 mm) shows analog output or TAG no.
 Line 4 shows status for communication.
- Programming access can be blocked by assigning a password. The password is saved in the device in order to ensure a high degree of protection against unauthorized modifications to the configuration.

Mounting / demounting the PR 45xx
1: Insert the tabs of the PR 45xx into the holes at the top of the device.
2: Hinge the PR 45xx down until it snaps into place.

Demounting of the PR 45xx
3: Push the release button on the bottom of the PR 45xx and hinge the the PR 45xx out and up.
4: With the PR 45xx hinged up, remove from holes at the top of the device.
Order

4114 = Universal transmitter

Accessories

4501 = Display / programming front
4511 = Modbus communication enabler
4512 = Bluetooth communication enabler
5910 = CJC connector

Electrical specifications

Environmental conditions
Operating temperature ... -20°C to +60°C
Storage temperature ... -20°C to +85°C
Calibration temperature 20...28°C
Relative humidity .. < 95% RH (non-cond.)
Protection degree .. IP20
Installation in pollution degree 2 & measurement / overvoltage category II.

Mechanical specifications
Dimensions (HxWxD) ... 109 x 23.5 x 104 mm
Dimensions (HxWxD) w/ 4501 / 451x 109 x 23.5 x 116 / 131 mm
Weight approx. .. 155 g
Weight incl. 4501 / 451x (approx.) 170 g / 185 g
DIN rail type ... DIN EN 60715 - 35 mm
Wire size ... 0.13...2.08 mm² / AWG 26...14 stranded wire
Screw terminal torque .. 0.5 Nm
Vibration .. IEC 60068-2-6
2...13.2 Hz ... ±1 mm
13.2...100 Hz ... ±0.7 g

Common electrical specifications
Supply voltage, universal 21.6...253 VAC, 50...60 Hz
or 19.2...300 VDC
Fuse ... 400 mA SB / 250 VAC
Max. required power .. ≤ 2.0 W
Max. power dissipation ≤ 2.0 W
Isolation voltage - test .. 2.3 kVAC
Isolation voltage - working 250 VAC (reinforced) / 500 VAC (basic)
Programming .. PR 45xx
Signal dynamics, input / output 24 bit / 16 bit
Signal / noise ratio .. > 60 dB (0...100 kHz)
Response time (0...90%, 100...10%):
 Temperature input ≤ 1 s
 mA / V input .. ≤ 400 ms

Auxiliary supplies
2-wire supply (terminal 44...43) 25...16 VDC / 0...20 mA
Accuracy, the greater of general and basic values:

<table>
<thead>
<tr>
<th>General values</th>
<th>Absolute accuracy</th>
<th>Temperature coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input type</td>
<td>≤ ±0.1% of span</td>
<td>≤ ±0.01% of span / °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic values</th>
<th>Basic accuracy</th>
<th>Temperature coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA</td>
<td>≤ ±4 µA</td>
<td>≤ ±0.4 µA / °C</td>
</tr>
<tr>
<td>Volt</td>
<td>≤ ±20 µV</td>
<td>≤ ±2 µV / °C</td>
</tr>
<tr>
<td>Pt100</td>
<td>≤ ±0.2°C</td>
<td>≤ ±0.01°C / °C</td>
</tr>
<tr>
<td>Linear resistance</td>
<td>≤ ±0.1 Ω</td>
<td>≤ ±0.01 Ω / °C</td>
</tr>
<tr>
<td>Potentiometer</td>
<td>≤ ±0.1 Ω</td>
<td>≤ ±0.01 Ω / °C</td>
</tr>
<tr>
<td>TC type: E, J, K, L, N, T, U</td>
<td>≤ ±1°C</td>
<td>≤ ±0.05°C / °C</td>
</tr>
<tr>
<td>TC type: R, S, W3, W5, LR</td>
<td>≤ ±2°C</td>
<td>≤ ±0.2°C / °C</td>
</tr>
<tr>
<td>TC type: B 85...200°C</td>
<td>≤ ±4°C</td>
<td>≤ ±0.4°C / °C</td>
</tr>
<tr>
<td>TC type: B 200...1820°C</td>
<td>≤ ±2°C</td>
<td>≤ ±0.2°C / °C</td>
</tr>
</tbody>
</table>

EMC - immunity influence: < ±0.5% of span
Extended EMC immunity:
NAMUR NE 21, A criterion, burst < ±1% of span

Input specifications
RTD, linear resistance and potentiometer input
Input for RTD types:
Pt10, Pt20, Pt50, Pt100, Pt200, PT250, Pt300, Pt400, Pt500, Pt1000
Ni50, Ni100, Ni120, Ni1000, Cu10, Cu20, Cu50, Cu100

<table>
<thead>
<tr>
<th>Input type</th>
<th>Min. value</th>
<th>Max. value</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt10...Pt1000</td>
<td>-200°C</td>
<td>+850°C</td>
<td>IEC 60751</td>
</tr>
<tr>
<td>Ni50...Ni1000</td>
<td>-60°C</td>
<td>+250°C</td>
<td>DIN 43760</td>
</tr>
<tr>
<td>Cu10...Cu1000</td>
<td>-200°C</td>
<td>+260°C</td>
<td>α = 0.00427</td>
</tr>
<tr>
<td>Lin. R</td>
<td>0 Ω</td>
<td>10000 Ω</td>
<td>-</td>
</tr>
<tr>
<td>Potentiometer</td>
<td>10 Ω</td>
<td>100 kΩ</td>
<td>-</td>
</tr>
</tbody>
</table>

Cable resistance per wire (max.), RTD 50 Ω
Sensor current, RTD Nom. 0.2 mA
Effect of sensor cable resistance (3- / 4-wire), RTD < 0.002 Ω / Ω
Sensor error detection, RTD Yes
Short circuit detection, RTD < 15 Ω
<table>
<thead>
<tr>
<th>Type</th>
<th>Min. value</th>
<th>Max. value</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0°C</td>
<td>+1820°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>E</td>
<td>-100°C</td>
<td>+1000°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>J</td>
<td>-100°C</td>
<td>+1200°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>K</td>
<td>-180°C</td>
<td>+1372°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>L</td>
<td>-200°C</td>
<td>+900°C</td>
<td>DIN 43710</td>
</tr>
<tr>
<td>N</td>
<td>-180°C</td>
<td>+1300°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>R</td>
<td>-50°C</td>
<td>+1760°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>S</td>
<td>-50°C</td>
<td>+1760°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>T</td>
<td>-200°C</td>
<td>+400°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>U</td>
<td>-200°C</td>
<td>+600°C</td>
<td>DIN 43710</td>
</tr>
<tr>
<td>W3</td>
<td>0°C</td>
<td>+2300°C</td>
<td>ASTM E988-90</td>
</tr>
<tr>
<td>W5</td>
<td>0°C</td>
<td>+2300°C</td>
<td>ASTM E988-90</td>
</tr>
<tr>
<td>LR</td>
<td>-200°C</td>
<td>+800°C</td>
<td>GOST 3044-84</td>
</tr>
</tbody>
</table>

Cold junction compensation (CJC):
- via external sensor in connector 5910: 20...28°C ≤ ±1°C
- via internal CJC sensor: ±(2.0°C + 0.4°C * Δt)

Δt = internal temperature - ambient temperature

Sensor error detection, all TC types: Yes

Sensor error current:
- when detecting: Nom. 2 μA
- else: 0 μA

Current input
- Measurement range: 0...23 mA
- Programmable measurement ranges: 0...20 and 4...20 mA
- Input resistance: Nom. 20 Ω + PTC 50 Ω
- Sensor error detection: Loop break 4...20 mA: Yes

Voltage input
- Measurement range: 0...12 VDC
- Programmable measurement ranges: 0...1 / 0.2...1 / 0...5 / 1...5 / 0...10 and 2...10 VDC
- Input resistance, nom.: 10 MΩ

Output specifications

Current output
- Signal range (span): 0...23 mA
- Programmable signal ranges: 0...20 / 4...20 / 20...0 and 20...4 mA
- Load (max.): ≤ 800 Ω
- Load stability: ≤ 0.01% of span / 100 Ω
- Sensor error detection: 0 / 3.5 / 23 mA / none
- NAMUR NE 43 Upscale / Downscale: 23 mA / 3.5 mA
- Output limitation:
 - on 4...20 and 20...4 mA signals: 3.8...20.5 mA
 - on 0...20 and 20...0 mA signals: 0...20.5 mA
- Current limit: ≤ 28 mA

Voltage output
- Signal range: 0...10 VDC
- Programmable signal ranges: 0...1 / 0.2...1 / 0...5 / 1...5 / 2...10 / 1...0 / 1...0.2 / 5...0 / 5...1 / 10...0 og 10...2 V
- Load (min.): 500 kΩ

of span = of the currently selected measurement range
Observed authority requirements
EMC. ... 2014/30/EU
LVD. ... 2014/35/EU
RoHS ... 2011/65/EU
EAC. ... TR-CU 020/2011

Approvals:
c Ul, us, UL 508. ... E231911
FM ... 3025177
DNV-GL ... TAA0000101
EU RO Mutual Recognition Type Approval MRA000000Z

Functional Safety:
Hardware assessed for use in SIL applications
FMEDA report - www.prelectronics.com

Visualisation in the 45xx of sensor error detection and input signal outside range

<table>
<thead>
<tr>
<th>Device</th>
<th>Configuration</th>
<th>Sensor error detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>4114</td>
<td>OUT.ERR=NONE.</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Else:</td>
<td>ON</td>
</tr>
</tbody>
</table>

Outside range readout (IN.LO, IN.HI):
If the valid range of the A/D converter or the polynomial is exceeded

<table>
<thead>
<tr>
<th>Input</th>
<th>Range</th>
<th>Readout</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLT</td>
<td>0...1 V / 0.2...1 V</td>
<td>IN.LO</td>
<td>< -25 mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>> 1.2 V</td>
</tr>
<tr>
<td></td>
<td>0...10 V / 2...10 V</td>
<td>IN.LO</td>
<td>< -25 mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>> 12 V</td>
</tr>
<tr>
<td>CURR</td>
<td>0...20 mA / 4...20 mA</td>
<td>IN.LO</td>
<td>< -1.05 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>> 25.05 mA</td>
</tr>
<tr>
<td>LIN.R</td>
<td>0...800 Ω</td>
<td>IN.LO</td>
<td>< 0 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>> 1075 Ω</td>
</tr>
<tr>
<td></td>
<td>0...10 kΩ</td>
<td>IN.LO</td>
<td>< 0 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>< 110 kΩ</td>
</tr>
<tr>
<td>POTM</td>
<td>-</td>
<td>IN.LO</td>
<td>< -0.5 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>> 100.5 %</td>
</tr>
<tr>
<td>TEMP</td>
<td>TC / RTD</td>
<td>IN.LO</td>
<td>< temperature range -2°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>> temperature range +2°C</td>
</tr>
</tbody>
</table>

Display readout below min. / above max. (-1999, 9999):

<table>
<thead>
<tr>
<th>Input</th>
<th>Range</th>
<th>Readout</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td>-1999</td>
<td>Display readout < -1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9999</td>
<td>Display readout > 9999</td>
</tr>
</tbody>
</table>
Sensor error detection limits

<table>
<thead>
<tr>
<th>Input</th>
<th>Range</th>
<th>Readout</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURR</td>
<td>Loop break (4..20 mA)</td>
<td>SE.BR</td>
<td><= 3.6 mA; >= 21 mA</td>
</tr>
<tr>
<td>POTM</td>
<td>All, SE.BR on all 3-wire</td>
<td>SE.BR</td>
<td>> ca. 126 kΩ</td>
</tr>
<tr>
<td>LIN.R</td>
<td>0...800 Ω</td>
<td>SE.BR</td>
<td>> ca. 875 Ω</td>
</tr>
<tr>
<td>TEMP</td>
<td>TC</td>
<td>SE.BR</td>
<td>> ca. 750 kΩ / (1.25 V)</td>
</tr>
<tr>
<td></td>
<td>RTD, 2-, 3-, and 4-wire</td>
<td>SE.BR</td>
<td>> ca. 15 kΩ</td>
</tr>
<tr>
<td></td>
<td>No SE.SH for Cuxx, Pt10, Pt20 and Pt50</td>
<td>SE.SH</td>
<td>< ca. 15 Ω</td>
</tr>
</tbody>
</table>

Error indications

<table>
<thead>
<tr>
<th>Error search</th>
<th>Readout</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test of internal CJC sensor</td>
<td>CJ.ER</td>
<td>CJC sensor defect or temperature outside range</td>
</tr>
<tr>
<td>Checksum test of the configuration in FLASH</td>
<td>FL.CO</td>
<td>Error in FLASH</td>
</tr>
<tr>
<td>Check measurement of analog output current</td>
<td>AO.ER</td>
<td>1) No load on the current output (only S4...20 / S20...4 mA)</td>
</tr>
<tr>
<td>Communications test 45xx / 4114</td>
<td>NO.CO</td>
<td>Connection error</td>
</tr>
<tr>
<td>Check that input signal matches input configuration</td>
<td>IN.ER</td>
<td>1) Error levels on input</td>
</tr>
<tr>
<td>Check that saved configuration in 45xx matches device</td>
<td>TY.ER</td>
<td>Configuration is not 4114</td>
</tr>
</tbody>
</table>

All error indications in the display flash once per second. The help text explains the error. If the error is a sensor error, the display backlight flashes as well - this is acknowledged (stopped) by pushing the button.

1) The error is reset by switching off and then switching on the supply voltage to the device.
Connections

Supply

Inputs:

- RTD, 2-wire
- RTD, 3-/4-wire
- TC, internal CJC sensor
- Resistance, 2-wire
- Resistance, 3-/4-wire
- Potentiometer
- 2-wire transmitter
- Current

Outputs:

- Current
- Voltage, 1 V
- Voltage, 10 V

* TC, CJC connector
* Order separately: CJC connector 5910
Configuration / operating the function keys

Documentation for routing diagram.

In general
When configuring the 4114, you will be guided through all parameters and you can choose the settings which fit the application. For each menu there is a scrolling help text which is automatically shown in line 3 on the display.

Configuration is carried out by use of the 3 function keys:
- will increase the numerical value or choose the next parameter
- will decrease the numerical value or choose the previous parameter
- will save the chosen value and proceed to the next menu

When configuration is completed, the display will return to the default state 1.0. Pressing and holding will return to the previous menu or return to the default state (1.0) without saving the changed values or parameters.

If no key is activated for 1 minute, the display will return to the default state (1.0) without saving the changed values or parameters.

Further explanations
Password protection: Programming access can be blocked by assigning a password. The password is saved in the device in order to ensure a high degree of protection against unauthorized modifications to the configuration.
If the configured password is not known, please contact PR electronics support - www.prelectronics.com/contact.

Signal and sensor error info via display front 45xx
Sensor error (see limits in the table) is displayed as SE.BR (sensor break) or SE.SH (sensor short). Signals outside the selected range (not sensor error, see table for limits) are displayed as IN.LO indicating low input signal or IN.HI indicating high input signal. The error indication is displayed in line 3 as text and at the same time the backlight flashes. Line 4 of the display is a status line which displays COM (flashing bullet) indicating correct functioning of 45xx and arrow up/down which indicates tendency readout of the input signal.

Signal and sensor error indication without display front
Status of the unit can also be read from the red / green LED in the front of the device.
- Green flashing LED 13 Hz indicates normal operation.
- Green flashing LED 1 Hz indicates sensor error.
- Steady red LED indicates internal error.

Advanced functions
The unit gives access to a number of advanced functions which can be reached by answering “Yes” to the point “ADV.SET”.

Memory (MEM): In the memory menu you can save the configuration of the device in the 45xx, and then move the 45xx onto another device of the same type and download the configuration in the new device.

Display setup (DISP): Here you can adjust the brightness contrast and the backlight. Setup of TAG numbers with 6 alphanumerics. Selection of functional readout in line 3 of the display - choose between readout of analog output or tag no.

Two-point process calibration (CAL): The device can be process-calibrated in 2 points to fit a given input signal. A low input signal (not necessarily 0%) is applied and the actual value is entered via 45xx. Then a high signal (not necessarily 100%) is applied and the actual value is entered via 45xx. If you accept to use the calibration, the device will work according to this new adjustment. If you later reject this menu point or choose another type of input signal the device will return to factory calibration.

Process simulation function (SIM): In the menu point “EN.SIM” it is possible to simulate an input signal by means of the arrow keys and thus control the output signal up or down. You must exit the menu by pressing (no time-out). The simulation function exits automatically, if the 45xx is detached.

Password (PASS): Here you can choose a password between 0000 and 9999 in order to protect the unit against unauthorized modifications to the configuration. The unit is delivered default without password.
Language (LANG): In the menu "LANG" you can choose between 7 different language versions of help texts that will appear in the menu. You can choose between UK, DE, FR, IT, ES, SE and DK.

Auto diagnosis
The device performs an advanced auto diagnosis of the internal circuits. The following possible errors can be displayed in the front unit 45xx.
- CJ.ER - CJC sensor defect or CJC temperature outside range
- FL.ER - Flash error
- AO.ER - No load on the current output (only for S4...20 mA / S20...4 mA)
- NO.CO - Connection error
- IN.ER - Error levels on input
- TY.ER - Configuration in 45xx does not match this product type

Selection of units
After choosing the input signal type you can choose which process units should be displayed in text line 2 (see table). By selection of temperature input the process value is always displayed in Celsius or Fahrenheit. This is selected in the menu point after selection of temperature input.

Safety readback & SIL operation
When the device is delivered with default configuration, the SIL function is disabled. The safety readback function (loop surveillance) can be selected in the menu O.RANGE, thus enabling the device to run in SIL mode. In order to enable the SIL functionality, the menu item S4...20 mA or S20...4 mA MUST be selected. All other assumptions and restrictions contained in the FMEDA report must also be observed. Please note, however, that when safety readback is enabled, a sensor error will be indicated as an error on the analog output signal.

CJC
In the CJC menu you can choose between CJC connector and internal cold junction compensation. The CJC connector (PR 5910) must be ordered separately.
Routing diagram

If no key is activated for 1 minute, the display will return to the default state 1.0 without saving configuration changes.

- Increase value / choose next parameter
- Decrease value / choose previous parameter
- Save the chosen value and proceed to the next menu
- Hold = Back to previous menu / return to menu 1.0 without saving.

1.0 = Default state
Line 1 shows input signal.
Line 2 shows UNIT.
By pressing up and down simultaneously line 3 alternates between A, OUT and TAG.
Line 4 shows communication status.

1.1 = Only if password-protected.
1.2 = Not valid for these input signals: 0…20 mA and voltage.
1.3 = Only if input signal is temperature.

Continued on the page:
Routing diagram ADV.SET
Routing diagram, advanced settings (ADV.SET)

To default state 1.0

2.0 In the submenu simulation (SIM) you must press \(\rightarrow\) to return to the default state 1.0.
Help text overview

[01] Set correct password
[02] Enter advanced setup menu?
[03] Select temperature input
 Select potentiometer input
 Select linear resistance input
 Select current input
 Select voltage input
[04] Select 0.0-1 V input range
 Select 0.2-1 V input range
 Select 0-5 V input range
 Select 0-10 V input range
 Select 2-10 V input range
[05] Select 0-20 mA input range
 Select 4-20 mA input range
[06] Select 2-wire sensor connection
 Select 3-wire sensor connection
 Select 4-wire sensor connection
[07] Set resistance value low
[08] Set resistance value high
[09] Select Celsius as temperature unit
 Select Fahrenheit as temperature unit
[10] Select TC sensor type
 Select Ni sensor type
 Select Pt sensor type
 Select Cu sensor type
[11] Select display unit
[12] Select decimal point position
[13] Set display range low
[14] Set display range high
[15] Set relays in % of input range
 Set relays in display units
[16] Select Pt10 as sensor type
 Select Pt20 as sensor type
 Select Pt50 as sensor type
 Select Pt100 as sensor type
 Select Pt200 as sensor type
 Select Pt250 as sensor type
 Select Pt300 as sensor type
 Select Pt400 as sensor type
 Select Pt500 as sensor type
 Select Pt1000 as sensor type
[17] Select Ni50 as sensor type
 Select Ni100 as sensor type
 Select Ni120 as sensor type
 Select Ni1000 as sensor type
[18] Select TC-B as sensor type
 Select TC-E as sensor type
 Select TC-J as sensor type
 Select TC-K as sensor type
 Select TC-L as sensor type
 Select TC-N as sensor type
 Select TC-R as sensor type
[19] Select TC-S as sensor type
[20] Select TC-T as sensor type
[21] Select TC-U as sensor type
[22] Select TC-W3 as sensor type
[23] Select TC-W5 as sensor type
[24] Select TC-Lr as sensor type
[25] Select current as analog output type
[26] Select voltage as analog output type
[27] Select 0-20 mA output range
 Select 4-20 mA output range
 Select S4-20 mA with safety readback
 Select 20-0 mA output range
 Select 20-4 mA output range
 Select S20-4 mA with safety readback
[28] Select no error action - output undefined at error
 Select downscale at error
 Select NAMUR NE43 downscale at error
 Select NAMUR NE43 upscale at error
[29] Select 0.0-1 V output range
 Select 0.2-1 V output range
 Select 0-5 V output range
 Select 1-5 V output range
 Select 0-10 V output range
 Select 2-10 V output range
 Select 1-0.0 V output range
 Select 1-0.2 V output range
 Select 5-0 V output range
 Select 5-1 V output range
 Select 10-0 V output range
 Select 10-2 V output range
[30] Select temperature for analog output low
[31] Select temperature for analog output high
[32] Enter password setup
 Enter simulation mode
 Perform process calibration
 Enter display setup
 Perform memory operations
[33] Load saved configuration into 4114
 Save 4116 configuration in 45xx
[34] Adjust LCD contrast
[35] Adjust LCD backlight
[36] Write a 6-character device TAG
[37] Analog output value is shown in display line 3
 Device TAG is shown in display line 3
[38] Calibrate input low to process value?
[39] Calibrate input high to process value?
[40] Enable simulation mode?
[41] Set the input simulation value
[42] Enable password protection?
[43] Set new password
[44] Select CJC connector (accessory)
[45] Select internal temperature sensor
Document history

The following list provides notes concerning revisions of this document.

<table>
<thead>
<tr>
<th>Rev. ID</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>2011</td>
<td>EU-RO marine approval added.</td>
</tr>
</tbody>
</table>
We are near you, *all over the world*

Our trusted red boxes are supported wherever you are

All our devices are backed by expert service and a 5-year warranty. With each product you purchase, you receive personal technical support and guidance, day-to-day delivery, repair without charge within the warranty period and easily accessible documentation.

We are headquartered in Denmark, and have offices and authorized partners the world over. We are a local business with a global reach. This means that we are always nearby and know your local markets well. We are committed to your satisfaction and provide PERFORMANCE MADE SMARTER all around the world.

For more information on our warranty program, or to meet with a sales representative in your region, visit prelectronics.com.
PR electronics is the leading technology company specialized in making industrial process control safer, more reliable and more efficient. Since 1974, we have been dedicated to perfecting our core competence of innovating high precision technology with low power consumption. This dedication continues to set new standards for products communicating, monitoring and connecting our customers' process measurement points to their process control systems.

Our innovative, patented technologies are derived from our extensive R&D facilities and from having a great understanding of our customers' needs and processes. We are guided by principles of simplicity, focus, courage and excellence, enabling some of the world's greatest companies to achieve PERFORMANCE MADE SMARTER.

www.prelectronics.com