Product manual

6335

2-wire HART transmitter

No. 6335V112-UK
From serial no.: 150951186
6 Product Pillars
to meet your every need

Individually outstanding, unrivalled in combination

With our innovative, patented technologies, we make signal conditioning smarter and simpler. Our portfolio is composed of six product areas, where we offer a wide range of analog and digital devices covering over a thousand applications in industrial and factory automation. All our products comply with or surpass the highest industry standards, ensuring reliability in even the harshest of environments and have a 5-year warranty for greater peace of mind.

Our range of temperature transmitters and sensors provides the highest level of signal integrity from the measurement point to your control system. You can convert industrial process temperature signals to analog, bus or digital communications using a highly reliable point-to-point solution with a fast response time, automatic self-calibration, sensor error detection, low drift, and top EMC performance in any environment.

We deliver the safest signals by validating our products against the toughest safety standards. Through our commitment to innovation, we have made pioneering achievements in developing I.S. interfaces with SIL 2 Full Assessment that are both efficient and cost-effective. Our comprehensive range of analog and digital intrinsically safe isolation barriers offers multifunctional inputs and outputs, making PR an easy-to-implement site standard. Our backplanes further simplify large installations and provide seamless integration to standard DCS systems.

We provide inexpensive, easy-to-use, future-ready communication interfaces that can access your PR installed base of products. All the interfaces are detachable, have a built-in display for readout of process values and diagnostics, and can be configured via push-buttons. Product specific functionality includes communication via Modbus and Bluetooth and remote access using our PR Process Supervisor (PPS) application, available for iOS and Android.

Our unique range of single devices covering multiple applications is easily deployable as your site standard. Having one variant that applies to a broad range of applications can reduce your installation time and training, and greatly simplify spare parts management at your facilities. Our devices are designed for long-term signal accuracy, low power consumption, immunity to electrical noise and simple programming.

Our compact, fast, high-quality 6 mm isolators are based on microprocessor technology to provide exceptional performance and EMC-immunity for dedicated applications at a very low total cost of ownership. They can be stacked both vertically and horizontally with no air gap separation between units required.

Our display range is characterized by its flexibility and stability. The devices meet nearly every demand for display readout of process signals, and have universal input and power supply capabilities. They provide a real-time measurement of your process value no matter the industry, and are engineered to provide a user-friendly and reliable relay of information, even in demanding environments.
2-wire HART transmitter 6335

Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>4</td>
</tr>
<tr>
<td>Technical characteristics</td>
<td>4</td>
</tr>
<tr>
<td>Mounting / installation</td>
<td>4</td>
</tr>
<tr>
<td>Applications</td>
<td>4</td>
</tr>
<tr>
<td>Order</td>
<td>5</td>
</tr>
<tr>
<td>Electrical specifications</td>
<td>5</td>
</tr>
<tr>
<td>Accessories</td>
<td>5</td>
</tr>
<tr>
<td>Connections</td>
<td>8</td>
</tr>
<tr>
<td>Block diagram</td>
<td>9</td>
</tr>
<tr>
<td>Programming</td>
<td>9</td>
</tr>
<tr>
<td>Connection of transmitters in multidrop mode</td>
<td>11</td>
</tr>
<tr>
<td>ATEX Installation Drawing - 6335A</td>
<td>12</td>
</tr>
<tr>
<td>ATEX Installation Drawing - 6335D</td>
<td>14</td>
</tr>
<tr>
<td>IECEx Installation Drawing - 6335A</td>
<td>16</td>
</tr>
<tr>
<td>IECEx Installation Drawing - 6335D</td>
<td>18</td>
</tr>
<tr>
<td>CSA Installation Drawing - 6335A</td>
<td>20</td>
</tr>
<tr>
<td>CSA Installation Drawing - 6335D</td>
<td>22</td>
</tr>
<tr>
<td>FM Installation Drawing - 6335D</td>
<td>24</td>
</tr>
<tr>
<td>Document history</td>
<td>26</td>
</tr>
</tbody>
</table>
2-wire HART transmitter
6335

- RTD, TC, Ohm, or mV input
- Extremely high measurement accuracy
- HART communication
- Galvanic isolation
- 1- or 2-channel version

Application
- Linearized temperature measurement with Pt100...Pt1000, Ni100...Ni1000, TC or sensor.
- Difference or average temperature measurement of 2 resistance or TC sensors.
- Conversion of linear resistance variation to a standard analog current signal, for instance from valves or Ohmic level sensors.
- Amplification of a bipolar mV signal to a standard 4...20 mA current signal.
- Connection of up to 15 channels to a digital 2-wire signal with HART communication.

Technical characteristics
- Within a few seconds the user can program PR6335 to measure temperatures within all ranges defined by the norms.
- The RTD and resistance inputs have cable compensation for 2-, 3- and 4-wire connection.
- The 6335 has been designed according to strict safety requirements and is thus suitable for application in SIL installations.
- A limit can be programmed on the output signal.
- Continuous check of vital stored data for safety reasons.
- Sensor error detection according to the guidelines in NAMUR NE 89.

Mounting / installation
- Mounted vertically or horizontally on a DIN rail. Using the 2-channel version up to 84 channels per metre can be mounted.
- Configuration via standard HART communication interfaces or by PR 5909 Loop Link.
- The 6335A can be mounted in zone 2, 22 / Class I, Division 2, Groups A, B, C, D.
- The 6335D can be mounted in zone 0, 1, 2 and zone 20, 21, 22 including M1 / Class I/II/ III, Division 1, Groups A, B, C, D.
Order

<table>
<thead>
<tr>
<th>Type</th>
<th>Version</th>
<th>Galvanic isolation</th>
<th>Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>6335</td>
<td>Zone 2, 22 / Div. 2</td>
<td>: A</td>
<td>1500 VAC</td>
</tr>
<tr>
<td></td>
<td>Zone 0, 1, 2, 20, 21, 22, M1 / DIV. 1, DIV. 2</td>
<td>: D</td>
<td>:</td>
</tr>
</tbody>
</table>

Accessories

5909 = Loop Link USB interface
5910 / 5910Ex = CJC connector for channel 1
5913 / 5913Ex = CJC connector for channel 2

Electrical specifications

Environmental conditions:
- Specification range: -40°C to +85°C
- Storage temperature: -40°C to +85°C
- Calibration temperature: 20...28°C
- Humidity: < 95% RH (non-cond.)
- Protection degree: IP20

Mechanical specifications:
- Dimensions (H x W x D): 109 x 23.5 x 104 mm
- Weight (1 / 2 channels): 145 / 185 g
- DIN rail type: DIN EN/IEC 60715 - 35 mm
- Wire size: 0.13...2.08 mm² / AWG 26...14 stranded wire
- Screw terminal torque: 0.5 Nm

Common specifications:
- Supply voltage, DC
 - 6335A: 8.0...35 VDC
 - 6335D: 8.0...30 VDC
- Internal power dissipation
 - 6335A, 1 / 2 ch.: 19 mW...0.8 / 1.6 W
 - 6335D, 1 / 2 ch.: 19 mW...0.7 / 1.4 W
- Voltage drop: 8.0 VDC
- Isolation voltage, test / operation: 1.5 kVAC / 50 VAC
- Warm-up time: 30 s
- Programming: Loop Link & HART
- Signal / noise ratio: Min. 60 dB
- Response time (programmable): 1...60 s
- EEPROM error check: < 10 s
- Signal dynamics, input: 22 bit
- Signal dynamics, output: 16 bit
- Effect of supply voltage variation: < 0.005% of span / VDC
Accuracy, the greater of general and basic values:

<table>
<thead>
<tr>
<th>General values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input type</td>
</tr>
<tr>
<td>All</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input type</td>
</tr>
<tr>
<td>Pt100 / Pt1000</td>
</tr>
<tr>
<td>Ni100</td>
</tr>
<tr>
<td>Lin. R</td>
</tr>
<tr>
<td>Volt</td>
</tr>
<tr>
<td>TC type: E, J, K, L, N, T, U</td>
</tr>
<tr>
<td>TC type: B, R, S, W3, W5</td>
</tr>
</tbody>
</table>

EMC - immunity influence. .. < ±0.1% of span
Extended EMC immunity:
NAMUR NE 21, A criterion, burst < ±1% of span

Electrical specifications, inputs:
Max. offset ... 50% of selected numerical max. value

RTD and linear resistance input:

<table>
<thead>
<tr>
<th>RTD type</th>
<th>Min. value</th>
<th>Max. value</th>
<th>Min. span</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100</td>
<td>-200°C</td>
<td>+850°C</td>
<td>10°C</td>
<td>IEC 60751</td>
</tr>
<tr>
<td>Ni100</td>
<td>-60°C</td>
<td>+250°C</td>
<td>10°C</td>
<td>DIN 43760</td>
</tr>
<tr>
<td>Lin. R</td>
<td>0 Ω</td>
<td>7000 Ω</td>
<td>25 Ω</td>
<td>-----</td>
</tr>
</tbody>
</table>

Cable resistance per wire (max.). 5 Ω
(up to 50 Ω per wire is possible with reduced measurement accuracy)
Sensor current ... Nom. 0.2 mA
Effect of sensor cable resistance (3- / 4-wire) < 0.002 Ω / Ω
Sensor error detection .. Yes
Short circuit detection ... If 0% > 30 Ω

TC inputs:

<table>
<thead>
<tr>
<th>Type</th>
<th>Min. temperature</th>
<th>Max. temperature</th>
<th>Min. span</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>+400°C</td>
<td>+1820°C</td>
<td>100°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>E</td>
<td>-100°C</td>
<td>+1000°C</td>
<td>50°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>J</td>
<td>-100°C</td>
<td>+1200°C</td>
<td>50°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>K</td>
<td>-180°C</td>
<td>+1372°C</td>
<td>50°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>L</td>
<td>-100°C</td>
<td>+900°C</td>
<td>50°C</td>
<td>DIN 43710</td>
</tr>
<tr>
<td>N</td>
<td>-180°C</td>
<td>+1300°C</td>
<td>50°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>R</td>
<td>-50°C</td>
<td>+1760°C</td>
<td>100°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>S</td>
<td>-50°C</td>
<td>+1760°C</td>
<td>100°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>T</td>
<td>-200°C</td>
<td>+400°C</td>
<td>50°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>U</td>
<td>-200°C</td>
<td>+600°C</td>
<td>50°C</td>
<td>DIN 43710</td>
</tr>
<tr>
<td>W3</td>
<td>0°C</td>
<td>+2300°C</td>
<td>100°C</td>
<td>ASTM E988-90</td>
</tr>
<tr>
<td>W5</td>
<td>0°</td>
<td>+2300°C</td>
<td>100°C</td>
<td>ASTM E988-90</td>
</tr>
</tbody>
</table>
Cold junction compensation .. < ±1.0°C
External CJC with Ni100 or Pt100 -40 ≤ T_{amb} ≤ 135°C
Sensor error detection ... Yes
Sensor error current:
 When detecting .. Nom. 33 µA
 Else ... 0 µA
Short circuit detection ... No

Voltage inputs:
Measurement range .. -800...+800 mV
Min. span ... 2.5 mV
Input resistance .. 10 MΩ

Output:
Current output:
Signal range ... 4...20 mA
Min. signal range .. 16 mA
Updating time ... 440 ms
(660 ms for diff.)
Fixed output signal .. Between 4 and 20 mA
Output signal at EEPROM error ≤ 3.5 mA
Load resistance ... ≤ (V_{supply} - 8.0) / 0.023 [Ω]
Load stability ... < ±0.01% of span / 100 Ω

Sensor error detection:
Programmable .. 3.5...23 mA
(shorted sensor error detection is ignored at TC and mV input)
NAMUR NE43 Upscale ... 23 mA
NAMUR NE43 Downscale ... 3.5 mA
Of span = Of the presently selected range

Approvals:
EMC ... 2014/30/EU
RoHS ... 2011/65/EU
ATEX ... 2014/34/EU
EAC ... TR-CU 020/2011
EAC Ex .. TR-CU 012/2011
Ex / I.S.:
ATEX ... KEMA 09ATEX0148 X
IECEx ... IECEx KEM 10.0084 X
CSA ... 1125003
FM ... FM17US0013X
EAC Ex .. RU C-DK.GB08.V.00410

Functionel safety:
Hardware assessed for use in SIL applications
FMEDA-report - www.prelectronics.com
Connections

Inputs:

Channel 1
- RTD, 2-wire
- RTD, 3-wire
- RTD, 4-wire
- TC, internal CJC

Channel 2
- TC, external CJC
- Resistance, 2-wire
- Resistance, 3-wire
- Resistance, 4-wire

Outputs:

Channel 1
- 2-wire installation
- HART® comm.

Channel 2
- 2-wire installation
- HART® comm.
Programming

6335 can be configured in the following 3 ways:
1. With PR electronics A/S' communications interface Loop Link and PReset PC configuration software.
2. With a HART modem and PReset PC configuration software.
3. With a HART communicator with PR electronics A/S' DDL driver.

1: Loop Link
For programming please refer to the drawing below and the help functions in PReset.
When communicating with non-installed devices, connectors 11, 12, 13, 14 (channel 1) and 21, 22, 23, 24 (channel 2) can be dismantled in the safe area to connect the terminals of the communications interface to the pins.
Loop Link is not approved for communication with devices installed in hazardous (Ex) area.
2: HART modem
For programming please refer to the drawing below and the help functions in PReset.

3: HART communicator
For programming please refer to the drawing below. To get access to productspecific commands, the HART communicator must be loaded with the PR electronics A/S DDL driver. This can be ordered either at the HART Communication Foundation or PR electronics A/S.
Connection of transmitters in multidrop mode

- The HART communicator or a PC modem can be connected across AB or BC.

- The outputs of max. 15 transmitters can be connected in parallel for a digital HART communication on 2-wires.
- Before it is connected, each transmitter must be configured with a unique number from 1 to 15. If 2 transmitters are configured with the same number, both will be excluded. The transmitters must be programmed for multidrop mode (with a fixed output signal of 4 mA). Maximum current in the loop is therefore 60 mA.
- The communication is either by means of a HART communicator or a HART modem.
- The PReset PC configuration software can configure the individual transmitter for multidrop mode and provide it with a unique polling address.

![Diagram of multidrop connection]
ATEX Installation drawing

For safe installation of 6335A or 6337A the following must be observed. The module shall only be installed by qualified personnel who are familiar with the national and international laws, directives and standards that apply to this area.

Year of manufacture can be taken from the first two digits in the serial number.

ATEX Certificate KEMA 09ATEX0148X

Marking

II 3 G Ex nA [ic] IIC T6..T4 Gc
II 3 G Ex ic IIIC T6..T4 Gc
II 3 D Ex ic IIIC Dc

T6: -40ºC to 60 ºC
T4: -40ºC to 85 ºC

Hazardous Area Zone 2 or Zone 22

Terminal:
41,42,43,44 / 51,52,53,54
Ex nA [ic]
Uo: 9.6 VDC
Io: 28 mA
Po: 67.2 mW
Lo: 45 mH
Co: 28 μF

Terminal:
11,12,13,14 21,22,23,24
Ex nA
Umax ≤ 35 VDC

Ex ic
Ui = 35 VDC
Li = 10 μH
Ci = 1.0 nF
General installation instructions

To avoid risk of ignition during installation and maintenance appropriate safety measures against electrostatic discharge (ESD) are to be considered.

The sensor circuit is not infallibly galvanic isolated from the supply output circuit. However, the galvanic isolation between the circuits is capable of withstanding a test voltage of 500 Vac during 1 minute.

For installation in a potentially explosive gas atmosphere, the following instructions apply:
If the transmitter is applied in type of protection “Ex nA”, it shall be installed in an enclosure that is Ex nA certified according to IEC-EN 60079-15, or “Ex e” certified and suitable for the application and correctly installed.
Cable entry devices and blanking elements shall fulfill the same requirements.

For installation in a potentially explosive dust atmosphere, the following instructions apply:
If the transmitter is supplied with an intrinsically safe signal “ic” and interfaces an intrinsically safe signal "ic" (e.g. a passive device), the transmitter shall be mounted in a metal enclosure that provides a degree of protection of at least IP6X according to EN/IEC 60529, and that is suitable for the application. Cable entry devices and blanking elements shall fulfill the same requirements. The surface temperature of the enclosure is equal to the ambient temperature +20K for a dust layer with a maximum thickness of 5 mm.
ATEX Installation drawing

For safe installation of 6335D or 6337D the following must be observed. The module shall only be installed by qualified personnel who are familiar with the national and international laws, directives and standards that apply to this area.

Year of manufacture can be taken from the first two digits in the serial number.

ATEX Certificate KEMA 09ATEX 0148 X

Marking K
II 1G Ex ia IIC T6..T4 Ga
II 1D Ex ia IIC Da
I M 1 Ex ia I Ma

Hazardous area
Zone 0, 1, 2, 20, 21, 22

T4: -40 ≤ Ta ≤ 85°C
T5: -40 ≤ Ta ≤ 60°C
T6: -40 ≤ Ta ≤ 40°C

Non Hazardous Area

Terminal:
41, 42, 43, 44
Uo: 9.6 VDC
Io: 28 mA
Po: 67.2 mW
Lo: 35 mH
Co: 3.5 μF

Terminal:
51, 52, 53, 54
Uo: 9.6 VDC
Io: 28 mA
Po: 67.2 mW
Lo: 35 mH
Co: 3.5 μF

Terminal:
11, 12, 13, 14 and
21, 22, 23, 24
Ui: 30 VDC
Ii: 120 mA
Pi: 0.84 W
Li: 10 μH
Ci: 1.0 nF

Ex HART Communicator

250 < R < 1100 ohm
General installation instructions
To avoid risk of ignition during installation and maintenance appropriate safety measures against electrostatic discharge (ESD) are to be considered.

The sensor circuit is not infallibly galvanic isolated from the supply output circuit. However, the galvanic isolation between the circuits is capable of withstanding a test voltage of 500Vac during 1 minute.

For installation in a potentially explosive gas atmosphere the following instructions apply:
To avoid risk of ignition due to electrostatic discharge (ESD) the transmitter shall be mounted in an enclosure providing a degree of protection of at least IP20 according to EN/IEC 60529.
Ambient temperature range:
T4: -40 ≤ Ta ≤ 85°C
T5: -40 ≤ Ta ≤ 60°C
T6: -40 ≤ Ta ≤ 40°C

For installation in a potentially explosive dust atmosphere, the following instructions apply:
The transmitter shall be mounted in a metal enclosure or equivalent that is providing a degree of protection of at least IP6X according to EN/IEC 60529 that is suitable for the application and correctly installed. Cable entries and blanking elements shall be used that are suitable for the application and correctly installed. The surface temperature of the enclosure is equal to the ambient temperature +20K for a dust layer with a maximum thickness of 5 mm.
Ambient temperature range:
T4: -40 ≤ Ta ≤ 85°C

For installation in a potentially explosive atmosphere in mines, the following instructions apply:
The transmitter shall be mounted in an enclosure providing a degree of protection of at least IP6X according to EN/IEC 60529. Cable entries and blanking elements shall be used that are suitable for the application and correctly installed.
Ambient temperature range:
T4: -40 ≤ Ta ≤ 85°C
IECEx Installation drawing

For safe installation of 6335A or 6337A the following must be observed. The module shall only be installed by qualified personnel who are familiar with the national and international laws, directives and standards that apply to this area.

Year of manufacture can be taken from the first two digits in the serial number.

IECEx Certificate IECEx KEM.10.0084X

Marking
Ex nA [ic] IIC T6..T4 Gc
Ex ic IIC T6..T4 Gc
Ex ic IIIC Dc

T6: -40°C to 60 °C
T4: -40°C to 85 °C

Hazardous Area Zone 2 or Zone 22

Terminal:
41,42,43,44 / 51,52,53,54
Ex nA [ic]

Uo: 9.6 VDC
Io: 28 mA
Po: 67.2 mW
Lo: 35 mH
Co: 3.5 μF

Terminal:
11,12,13,14
21,22,23,24
Ex nA
U ≤ 35 VDC

Ex ic
Ui : 35 VDC
Li : 10 μH
Ci : 1.0 nF
General installation instructions
If the enclosure is made of non-metallic materials or of painted metal, electrostatic charging
shall be avoided.

The sensor circuit is not infallibly galvanic isolated from the supply output circuit. However, the
galvanic isolation between the circuits is capable of withstanding a test voltage of 500Vac
during 1 minute.

For installation in a potentially explosive gas atmosphere, the following instructions apply:
If the transmitter is applied in type of protection “Ex nA”, it shall be installed in an enclosure
that is Ex nA certified according to IEC-EN 60079-15, or “Ex e” certified and suitable for the
application and correctly installed.
Cable entry devices and blanking elements shall fulfill the same requirements

For installation in a potentially explosive dust atmosphere, the following instructions apply:
If the transmitter is supplied with an intrinsically safe signal "ic" and interfaces an intrinsically
safe signal "ic" (e.g. a passive device), the transmitter shall be mounted in a metal enclosure
that provides a degree of protection of at least IP6X according to EN/IEC 60529, and that is
suitable for the application. Cable entry devices and blanking elements shall fulfill the same
requirements. The surface temperature of the enclosure is equal to the ambient temperature
+20K for a dust layer with a maximum thickness of 5 mm.
IECEEx Installation drawing

For safe installation of 6335D or 6337D the following must be observed. The module shall only be installed by qualified personnel who are familiar with the national and international laws, directives and standards that apply to this area.

Year of manufacture can be taken from the first two digits in the serial number.

IECEEx Certificate: IECEx KEM.10.0084X

Marking: Ex ia IIC T4 Ga
Ex ia IIIC Da
Ex ia I Ma

Hazardous area
Zone 0, 1, 20, 21, 22

Non Hazardous Area

<table>
<thead>
<tr>
<th>Terminal: 41,42,43,44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uo: 9.6 VDC</td>
</tr>
<tr>
<td>Io: 28 mA</td>
</tr>
<tr>
<td>Po: 67.2 mW</td>
</tr>
<tr>
<td>Lo: 35 mH</td>
</tr>
<tr>
<td>Co: 3.5 μF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminal: 51,52,53,54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uo: 9.6 VDC</td>
</tr>
<tr>
<td>Io: 28 mA</td>
</tr>
<tr>
<td>Po: 67.2 mW</td>
</tr>
<tr>
<td>Lo: 35 mH</td>
</tr>
<tr>
<td>Co: 3.5 μF</td>
</tr>
</tbody>
</table>

Terminal: 11,12,13,14 and 21,22,23,24
Ui: 30 VDC
Li: 120 mA
Pi: 0.84 W
Li: 10 μH
Ci: 1.0 nF

T4: -40 ≤ Ta ≤ 85ºC
T5: -40 ≤ Ta ≤ 60ºC
T6: -40 ≤ Ta ≤ 40ºC

250 < R < 1100 ohm

Ex HART Communicator
General installation instructions
To avoid risk of ignition during installation and maintenance appropriate safety measures against electrostatic discharge (ESD) are to be considered.

The sensor circuit is not infallibly galvanic isolated from the supply output circuit. However, the galvanic isolation between the circuits is capable of withstanding a test voltage of 500Vac during 1 minute.

For installation in a potentially explosive gas atmosphere the following instructions apply:
To avoid risk of ignition due to electrostatic discharge (ESD) the transmitter shall be mounted in an enclosure providing a degree of protection of at least IP20 according to EN/IEC 60529.
Ambient temperature range:
- T4: -40 ≤ Ta ≤ 85°C
- T5: -40 ≤ Ta ≤ 60°C
- T6: -40 ≤ Ta ≤ 40°C

For installation in a potentially explosive dust atmosphere, the following instructions apply:
The transmitter shall be mounted in a metal enclosure or equivalent that is providing a degree of protection of at least IP6X according to EN/IEC 60529 that is suitable for the application and correctly installed. Cable entries and blanking elements shall be used that are suitable for the application and correctly installed. The surface temperature of the enclosure is equal to the ambient temperature +20K for a dust layer with a maximum thickness of 5 mm.
Ambient temperature range:
- T4: -40 ≤ Ta ≤ 85°C

For installation in a potentially explosive atmosphere in mines, the following instructions apply:
The transmitter shall be mounted in an enclosure providing a degree of protection of at least IP6X according to EN/IEC 60529. Cable entries and blanking elements shall be used that are suitable for the application and correctly installed.
Ambient temperature range:
- T4: -40 ≤ Ta ≤ 85°C
For safe installation of the single channel 6335A2A, 6337A2A or the two channel 6335A2B, 6337A2B the following must be observed. The module shall only be installed by qualified personnel who are familiar with the national and international laws, directives and standards that apply to this area.

Marking
Class I, Division 2, Group A,B,C,D T4..T6
Class I Zone 2 Ex/AEx nA[ic] IIC T4..T6
Class I Zone 2 Ex/AEx nA IIC T4..T6
NIFW Class I Division 2, Group A,B,C,D

Terminal:
- **41,42,43,44**
 - Uo: 9.6 VDC
 - Io: 25 mA
 - Po: 60 mW
 - Lo: 33 mH
 - Co: 2.4 μF

Terminal:
- **51,52,53,54**
 - Uo: 9.6 VDC
 - Io: 25 mA
 - Po: 60 mW
 - Lo: 33 mH
 - Co: 2.4 μF

Functional Ratings:
- U nominal ≤ 35 VDC;
- I nominal ≤ 3.5 - 23 mA

Hazardous Area
- CL I, Div 2, GP ABCD
- CL I, Zone 2, IIC
NI Installation instructions

The transmitter must be installed in an enclosure providing a degree of protection of at least IP54 according to IEC60529 that is suitable for the application and is correctly installed. Cable entry devices and blanking elements shall fulfill the same requirements.
If the enclosure is made of non-metallic materials or of painted metal, electrostatic charging shall be avoided.
Use supply wires with a rating of at least 5 K above the ambient temperature.
Supply from a Class 2 Power Supply with Transient protection or equivalent.

WARNING: Substitution of components may impair suitability for Class I, Division 2.
AVERTISSEMENT: la substitution de composants peut nuire à l’aptitude à la Classe I, Division 2.

WARNING: Do not disconnect equipment unless power has been switched off or the area is known to be safe.
AVERTISSEMENT: Ne débranchez pas l’équipement sauf si l’alimentation a été coupée ou si la zone est connue pour être sûre.

Non Incendive field wiring installation
The non incendive field Wiring Circuit concept allows interconnection of Nonincendive Field wiring Apparatus with Associated Nonincendive Field Wiring Apparatus or Associated Intrinsically Safe Apparatus or Associated Apparatus not specially examined in combination as a system using any of the wiring methods permitted for unclassified locations, \[\text{Voc} < \text{Vmax}, \text{Ca} \geq \text{Ci} + \text{Ccable} , \text{La} \geq \text{Li} + \text{Lcable}. \]
Installation notes.

The Transmitter must be installed in a suitable enclosure to meet installation codes stipulated in The Canadian Electrical Code (CEC).

Substitution of components may impair intrinsic safety.
Installation notes.
The Transmitter must be installed in a suitable enclosure to meet installation codes stipulated in The Canadian Electrical Code (CEC).

Channel 1 and Channel 2 are separate channels and therefore separate shielded cables shall be used for each channel.

Substitution of components may impair intrinsic safety.
Installation notes

For installation in Class I the Transmitter must be installed in a suitable enclosure to meet installation codes stipulated in The National Electrical Code (ANSI-NFPA 70). Equipment that is FM-approved for intrinsic safety may be connected to barriers based on the Entity Concept. This concept permits interconnection of approved transmitters, meters and other devices in combinations, which have not been specifically examined by FM, provided that the agency's criteria are met. The combination is then intrinsically safe, if the entity concept is acceptable to the authority having jurisdiction over the installation.

The entity concept criteria are as follows: The intrinsically safe devices, other than barriers, must not be a source of power. The maximum voltage \(U(\text{MAX})\) and current \(I(\text{MAX})\), and maximum power \(P(\text{MAX})\), which the device can receive and remain intrinsically safe, must be equal to or greater than the voltage \(U_0\) or \(V_{\text{DC}}\) or \(V_i\) and current \(I_0\) or \(I_{\text{SC}}\) or \(I_i\) and the power \(P_0\) which can be delivered by the barrier. The sum of the maximum unprotected capacitance \(C_i\) for each intrinsically device and the interconnecting wiring must be less than the capacitance \(C_a\) which can be safely connected to the barrier. The sum of the maximum unprotected inductance \(L_i\) for each intrinsically device and the interconnecting wiring must be less than the inductance \(L_a\) which can be safely connected to the barrier. The entity parameters \(U_0, V_{\text{DC}}\) or \(V_i\) and \(I_0, I_{\text{SC}}\) or \(I_i\), and \(C_a\) and \(L_a\) for barriers are provided by the barrier manufacturer.
Installation notes

The Transmitter must be installed in a suitable enclosure to meet installation codes stipulated in The National Electrical Code (ANSI-NFPA 70).

To assure a Non-Incendive system the transmitter and associated apparatus must be wired in accordance with the associated apparatus manufacturers field wiring instructions and the circuit diagram shown above.
Document history

The following list provides notes concerning revisions of this document.

<table>
<thead>
<tr>
<th>Rev. ID</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>15/50</td>
<td>ATEX & IECEx M1 approval added.</td>
</tr>
<tr>
<td>112</td>
<td>19/45</td>
<td>CSA approval for 6335A received. Installation drawing added. FM certificate no updated.</td>
</tr>
</tbody>
</table>
We are near you, all over the world

Our trusted red boxes are supported wherever you are

All our devices are backed by expert service and a 5-year warranty. With each product you purchase, you receive personal technical support and guidance, day-to-day delivery, repair without charge within the warranty period and easily accessible documentation.

We are headquartered in Denmark, and have offices and authorized partners the world over. We are a local business with a global reach. This means that we are always nearby and know your local markets well. We are committed to your satisfaction and provide PERFORMANCE MADE SMARTER all around the world.

For more information on our warranty program, or to meet with a sales representative in your region, visit prelectronics.com.
Benefit today from

PERFORMANCE MADE SMARTER

PR electronics is the leading technology company specialized in making industrial process control safer, more reliable and more efficient. Since 1974, we have been dedicated to perfecting our core competence of innovating high precision technology with low power consumption. This dedication continues to set new standards for products communicating, monitoring and connecting our customers’ process measurement points to their process control systems.

Our innovative, patented technologies are derived from our extensive R&D facilities and from having a great understanding of our customers’ needs and processes. We are guided by principles of simplicity, focus, courage and excellence, enabling some of the world’s greatest companies to achieve PERFORMANCE MADE SMARTER.