Safety manual
9202
Pulse isolator

Version No. V7R0
6 Product Pillars
to meet your every need

Individually outstanding, unrivalled in combination

With our innovative, patented technologies, we make signal conditioning smarter and simpler. Our portfolio is composed of six product areas, where we offer a wide range of analog and digital devices covering over a thousand applications in industrial and factory automation. All our products comply with or surpass the highest industry standards, ensuring reliability in even the harshest of environments and have a 5-year warranty for greater peace of mind.

Our range of temperature transmitters and sensors provides the highest level of signal integrity from the measurement point to your control system. You can convert industrial process temperature signals to analog, bus or digital communications using a highly reliable point-to-point solution with a fast response time, automatic self-calibration, sensor error detection, low drift, and top EMC performance in any environment.

We deliver the safest signals by validating our products against the toughest safety standards. Through our commitment to innovation, we have made pioneering achievements in developing I.S. interfaces with SIL 2 Full Assessment that are both efficient and cost-effective. Our comprehensive range of analog and digital intrinsically safe isolation barriers offers multifunctional inputs and outputs, making PR an easy-to-implement site standard. Our backplanes further simplify large installations and provide seamless integration to standard DCS systems.

We provide inexpensive, easy-to-use, future-ready communication interfaces that can access your PR installed base of products. All the interfaces are detachable, have a built-in display for readout of process values and diagnostics, and can be configured via push-buttons. Product specific functionality includes communication via Modbus and Bluetooth and remote access using our PR Process Supervisor (PPS) application, available for iOS, Android and Windows.

Our unique range of single devices covering multiple applications is easily deployable as your site standard. Having one variant that applies to a broad range of applications can reduce your installation time and training, and greatly simplify spare parts management at your facilities. Our devices are designed for long-term signal accuracy, low power consumption, immunity to electrical noise and simple programming.

Our compact, fast, high-quality 6 mm isolators are based on microprocessor technology to provide exceptional performance and EMC-immunity for dedicated applications at a very low total cost of ownership. They can be stacked both vertically and horizontally with no air gap separation between units required.

Our display range is characterized by its flexibility and stability. The devices meet nearly every demand for display readout of process signals, and have universal input and power supply capabilities. They provide a real-time measurement of your process value no matter the industry, and are engineered to provide a user-friendly and reliable relay of information, even in demanding environments.
SAFETY MANUAL

PULSE ISOLATOR

9202

This safety manual is valid for the following product versions:
9202-002
9202-003

1. Observed standards .. 4
2. Acronyms and abbreviations.. 4
3. Purpose of the product.. 4
4. Assumptions and restrictions for use of the product .. 4
 4.1 Basic safety specifications.. 4
 4.2 Associated equipment .. 5
 4.2.1 Relay output ... 5
 4.2.2 Opto output.. 5
 4.2.3 Field device .. 5
 4.3 Failure rates .. 5
 4.4 Safe parameterization .. 5
 4.5 Installation in hazardous areas ... 5
5. Functional specification of the safety functions.. 5
6. Functional specification of the non-safety functions .. 5
7. Safety parameters .. 5
8. Hardware and software configuration ... 6
9. Failure category .. 6
10. Periodic proof test procedure .. 6
11. Procedures to repair or replace the product ... 6
12. Maintenance ... 6
13. Documentation for routing diagram ... 7
 13.1 In general ... 7
 13.2 Further explanations .. 7
 13.2.1 Password protection ... 7
 13.2.2 Cable fault information via display front 45xx ... 7
 13.3 Advanced functions .. 7
 13.3.1 Display setup .. 7
 13.3.2 Password .. 7
 13.3.3 Language .. 7
 13.3.4 Power rail .. 7
 13.3.5 Safety integrity level .. 7
14. Safe parameterization - user responsibility ... 8
 14.1 Safety-related configuration parameters .. 8
 14.2 Verification procedure .. 8
 14.2.1 If no password is set ... 8
 14.2.2 If password is set .. 9
 14.2.3 If any parameter is found to be incorrect during verification .. 9
 14.3 Functional test ... 9
15. Fault reaction and restart condition .. 9
16. User interface ... 9
 16.1 Scrolling help texts in display line 3 ... 10
 16.2 Routing diagram .. 11
 16.3 Routing diagram, advanced settings (ADV.SET) .. 12
17. Connections ... 13
1. **Observed standards**

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61508</td>
<td>Functional Safety of electrical / electronic / programmable electronic safety-related systems</td>
</tr>
<tr>
<td>IEC 61326-3-1:2008</td>
<td>Immunity requirements for safety-related systems</td>
</tr>
</tbody>
</table>

2. **Acronyms and abbreviations**

<table>
<thead>
<tr>
<th>Acronym / Abbreviation</th>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td></td>
<td>Term defined by IEC 61508 as “part of a subsystem comprising a single component or any group of components that performs one or more element safety functions”</td>
</tr>
<tr>
<td>PFD</td>
<td>Probability of Failure on Demand</td>
<td>This is the likelihood of dangerous safety function failures occurring on demand.</td>
</tr>
<tr>
<td>PFH</td>
<td>Probability of dangerous Failure per Hour</td>
<td>The term “Probability” is misleading, as IEC 61508 defines a Rate.</td>
</tr>
<tr>
<td>SFF</td>
<td>Safe Failure Fraction</td>
<td>Safe Failure Fraction summarizes the fraction of failures which lead to a safe state and the fraction of failures which will be detected by diagnostic measures and lead to a defined safety action.</td>
</tr>
<tr>
<td>SIF</td>
<td>Safety Integrity Function</td>
<td>Function that provides fault detection (to ensure the necessary safety integrity for the safety functions)</td>
</tr>
<tr>
<td>SIL</td>
<td>Safety Integrity Level</td>
<td>The international standard IEC 61508 specifies four discrete safety integrity levels (SIL 1 to SIL 4). Each level corresponds to a specific probability range regarding the failure of a safety function.</td>
</tr>
</tbody>
</table>

3. **Purpose of the product**

Pulse isolator for transmission of signals to the safe area from NAMUR sensors and mechanical switches installed in the hazardous area.

The module can be mounted in the safe area and in zone 2 / div. 2 and receive signals from zone 0, 1, 2, 20, 21 and 22 / Class I/II/III, Div. 1, Gr. A-G.

Error events, including cable breakage, are monitored and signalled via the individual status relay and/or a collective electronic signal via the power rail.

The 9202 has been designed, developed and certified for use in SIL 2 applications according to the requirements of IEC 61508.

4. **Assumptions and restrictions for use of the product**

4.1 **Basic safety specifications**

- Operational temperature range: -20...+60°C
- Storage temperature range: -20...+85°C
- Power supply type, min.: Double or reinforced
- Supply voltage: 19.2...31.2 VDC
- Output pulse length, min.: 40 μs
- Mounting area: Zone 2 / Division 2 or safe area
- Mounting environment: Pollution degree 2 or better
4.2 Associated equipment

4.2.1 Relay output
The relay output shall only be connected to equipment which has a current limiting function of 2 A.

4.2.2 Opto output
The opto output signals are fed to SIL 2 compliant inputs of a safety PLC specified to receive a frequency of 5 kHz and a pulse length down to 40 microseconds or the field device signal pulse length minus 60 microseconds.

4.2.3 Field device
The field device must provide a minimum pulse length of 100 microseconds.

4.3 Failure rates
The basic failure rates from the Siemens standard SN 29500 are used as the failure rate database. Failure rates are constant, wear-out mechanisms are not included. External power supply failure rates are not included.

4.4 Safe parameterization
The user is responsible for verifying the correctness of the configuration parameters. (See section 14 Safe parameterization - user responsibility). Manual override may not be used for safety applications.

4.5 Installation in hazardous areas
The IECex Installation drawing, ATEX Installation drawing and FM Installation drawing shall be followed if the products are installed in hazardous areas.

5. Functional specification of the safety functions
Pulse isolator as well as supply of NAMUR sensors and mechanical switches with cable error detection installed in the hazardous area. Cable error detection only works with NAMUR sensors or with the use of external resistors R_s and R_p. See connections diagram at page 13 (switch, cable fault).

6. Functional specification of the non-safety functions
The status relay (terminal 33 and 34), error signal on power rail (terminal 91) and LED outputs are not suitable for use in any Safety Instrumented Function.

7. Safety parameters

<table>
<thead>
<tr>
<th></th>
<th>Relay</th>
<th>Opto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of dangerous Failure per Hour (PFH)</td>
<td>4.66E-8</td>
<td>3.62E-8</td>
</tr>
<tr>
<td>Note 1, Note 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability of failure on demand (PFD) - 1 year proof test interval</td>
<td>2.04E-4</td>
<td>1.58E-4</td>
</tr>
<tr>
<td>Proof test interval (10% of loop PFD)</td>
<td>4 years</td>
<td>5 years</td>
</tr>
<tr>
<td>Safe Failure Fraction</td>
<td>90%</td>
<td>91%</td>
</tr>
<tr>
<td>Demand response time, opto output</td>
<td><125 µs</td>
<td></td>
</tr>
<tr>
<td>Demand response time, relay output</td>
<td><10 ms</td>
<td></td>
</tr>
<tr>
<td>Demand mode</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Demand rate</td>
<td>1000 s</td>
<td></td>
</tr>
<tr>
<td>Mean Time To Repair (MTTR)</td>
<td>8 hours</td>
<td></td>
</tr>
<tr>
<td>Diagnostic test interval</td>
<td>10 seconds</td>
<td></td>
</tr>
<tr>
<td>Hardware Fault Tolerance (HFT)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Component Type</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>SIL capability</td>
<td>SIL 2</td>
<td></td>
</tr>
<tr>
<td>Description of the “Safe State”, opto output</td>
<td>High impedance</td>
<td></td>
</tr>
<tr>
<td>Description of the “Safe State”, relay output</td>
<td>De-energized</td>
<td></td>
</tr>
<tr>
<td>Relay lifetime (Note-)</td>
<td>100 000 times</td>
<td></td>
</tr>
</tbody>
</table>
Note¹: The 9202 contains no lifetime limiting components, therefore the PFH figures are valid for up to 12 years, according to IEC 61508.

Note²: The maximum frequency for Pulse Isolator 9202 with relay output is 20 Hz. The user must calculate the product lifetime with regard to the relay lifetime.

8. **Hardware and software configuration.**
 All configurations of software and hardware versions are fixed from factory, and cannot be changed by end-user or reseller. This manual only covers products labelled with the product version (or range of versions) specified on the front page.

9. **Failure category**

<table>
<thead>
<tr>
<th>Failure category</th>
<th>Failure rates (1/h)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relay</td>
<td>Opto</td>
<td></td>
</tr>
<tr>
<td>Fail Safe Detected</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td></td>
</tr>
<tr>
<td>Fail Safe Undetected</td>
<td>2.897E-07</td>
<td>2.755E-07</td>
<td></td>
</tr>
<tr>
<td>Fail Dangerous Detected</td>
<td>1.303E-07</td>
<td>1.356E-07</td>
<td></td>
</tr>
<tr>
<td>Fail Dangerous Undetected</td>
<td>4.658E-08</td>
<td>3.618E-08</td>
<td></td>
</tr>
</tbody>
</table>

10. **Periodic proof test procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bypass the safety PLC or take other appropriate action to avoid a false trip</td>
</tr>
<tr>
<td>2</td>
<td>Connect a simulator identical to the input setup</td>
</tr>
<tr>
<td>3</td>
<td>Perform an ON / OFF signal for each channel</td>
</tr>
<tr>
<td>4</td>
<td>Observe whether the output channel acts as expected</td>
</tr>
<tr>
<td>5</td>
<td>Restore the input terminals to full operation</td>
</tr>
<tr>
<td>6</td>
<td>Remove the bypass from the safety PLC or otherwise restore normal operation</td>
</tr>
</tbody>
</table>

This test will detect approximately 95% of possible “du” (dangerous undetected) failures in the pulse isolator. The proof test is equivalent to the functional test.

11. **Procedures to repair or replace the product**
Any failures that are detected and that compromise functional safety should be reported to the sales department at PR electronics A/S.
Repair of the module and replacement of circuit breakers must be done by PR electronics A/S only.

12. **Maintenance**
No maintenance required.
13. Documentation for routing diagram
The routing diagram is shown in section 16.2.

13.1 In general
When configuring the 9202, you will be guided through all parameters and you can choose the settings which fit the application. For each menu there is a scrolling help text which is automatically shown in line 3 on the display. Configuration is carried out by use of the 3 function keys:
- will increase the numerical value or choose the next parameter
- will decrease the numerical value or choose the previous parameter
- will save the chosen value and proceed to the next menu
When configuration is completed, the display will return to the default state 1.0.
Pressing and holding \(\text{ \textbullet} \) will return to the previous menu or return to the default state (1.0) without saving the changed values or parameters.
If no key is activated for 1 minute, the display will return to the default state (1.0) without saving the changed values or parameters.

13.2 Further explanations

13.2.1 Password protection
Programming access can be blocked by assigning a password. The password is saved in the device in order to ensure a high degree of protection against unauthorized modifications to the configuration. If the configured password is not known, please contact PR electronics support - www.prelec.com/contact.
Password protection is mandatory in SIL applications.

13.2.2 Cable fault information via display front 45xx
Cable fault (see limits in the table) is displayed as CA.BR (cable break) or CA.SH (cable short-circuited). Cable fault is shown independently for each channel but the configuration is common for both channels. In case of cable fault the backlight flashes. This can be reset by pressing the \(\text{ \textbullet} \) key. When the cable fault has been remedied, the module will return to normal operation.

13.3 Advanced functions
The unit gives access to a number of advanced functions which can be reached by answering “Yes” to the point “adv. set”.

13.3.1 Display setup
Here you can adjust the brightness contrast and the backlight. Setup of tag numbers with 5 alphanumerics. Selection of functional readout in line 2 and 3 of the display - choose between readout of digital output or tag no. When selecting “ALT” the readout toggles between digital output and tag no.

13.3.2 Password
Here you can choose a password between 0000 and 9999 in order to protect the unit against unauthorized modifications to the configuration. The unit is delivered default without password.

13.3.3 Language
In the menu “LANG” you can choose between 7 different language versions of help texts that will appear in the menu. You can choose between UK, DE, FR, IT, ES, SE and DK.

13.3.4 Power rail
In the menu “RAIL” you can choose if errors in the module are transmitted to the central surveillance in the PR 9410 power control unit.

13.3.5 Safety integrity level
See Safe parameterization - user responsibility
14. Safe parameterization - user responsibility

14.1 Safety-related configuration parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1.FUN</td>
<td>DIR / INV</td>
<td>Direct / inverted channel function</td>
</tr>
<tr>
<td>CH2.FUN</td>
<td>DIR / INV</td>
<td>Direct / inverted channel function</td>
</tr>
<tr>
<td>PASSW</td>
<td>0 - 9999</td>
<td>New password</td>
</tr>
</tbody>
</table>

The above safety-related configuration parameters are marked in red text in the routing diagrams and must be verified by the user in a SIL-configuration.

14.2 Verification procedure

The verification is done using the display / programming front PR 45xx by following the procedure described below.

14.2.1 If no password is set

<table>
<thead>
<tr>
<th>Action</th>
<th>Display shows</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Press OK</td>
<td>ADV.SET</td>
</tr>
<tr>
<td>2 Set (ADV.SET) to Yes and press OK</td>
<td>DISP SETUP</td>
</tr>
<tr>
<td>3 Step down to (SIL SETUP) and press OK</td>
<td>EN.SIL</td>
</tr>
<tr>
<td>4 Set (EN SIL) to YES and press OK</td>
<td>NEW.PASS</td>
</tr>
<tr>
<td>5 Set password to a number between 0 and 9999 and press OK (At this time the module starts operating in SIL mode with the entered configuration parameters!)</td>
<td>Verify⇒OPEN “briefly” ⇒LOCK*</td>
</tr>
<tr>
<td>6 Verify Channel 1 function and press OK</td>
<td>CH1.FUN</td>
</tr>
<tr>
<td>7 Verify Channel 2 function and press OK</td>
<td>CH2:FUN</td>
</tr>
<tr>
<td>8 Verify password and press OK</td>
<td>PASSW</td>
</tr>
<tr>
<td>9 Verify SIL and press OK</td>
<td></td>
</tr>
</tbody>
</table>

* Open is shown briefly in the display.
14.2.2 If password is set

<table>
<thead>
<tr>
<th>Action</th>
<th>Display shows</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Press OK</td>
<td>PASSW</td>
</tr>
<tr>
<td>2 Enter password and press OK</td>
<td>ADV.SET</td>
</tr>
<tr>
<td>3 Set (ADV.SET) to Yes and press OK</td>
<td>DISP SETUP</td>
</tr>
<tr>
<td>4 Step down to (SIL SETUP) and press OK</td>
<td>EN.SIL</td>
</tr>
<tr>
<td>5 Set (EN.SIL) to YES and press OK (At this time the module starts operating in SIL mode with the entered configuration parameters!)</td>
<td>Verify=OPEN "briefly" =>LOCK*</td>
</tr>
<tr>
<td>6 Verify Channel 1 function and press OK</td>
<td>CH1:FUN</td>
</tr>
<tr>
<td>7 Verify Channel 2 function and press OK</td>
<td>CH2:FUN</td>
</tr>
<tr>
<td>8 Verify password and press OK</td>
<td>PASSW</td>
</tr>
<tr>
<td>9 Verify SIL and press OK</td>
<td></td>
</tr>
</tbody>
</table>

* Open is shown briefly in the display

14.2.3 If any parameter is found to be incorrect during verification
Remove SIL-mode (by entering the password and setting EN.SIL to NO in the "ADV.SET -> SIL" setup menu).
Go through the setup menu and correct the parameter(s).
Repeat step 1 to 9 above (with correct parameters).

14.3 Functional test
The user is responsible to make a functional test after verification of safety parameters. The procedure for periodic proof test described in section 10 shall be used.

15. Fault reaction and restart condition
When the 9202 detects a fault the output will go to Safe State, in which the opto output will go to "high impedance" or the relay output will go to "de-energized".
If the fault is application-specific (cable error detection) the 9202 will restart when the fault has been corrected.
For device faults there are 2 ways of bringing the module out of Safe State.
1. Power cycle the module.
2. Bring the module out of SIL mode (choose "NO" in the menu point "EN.SIL"), and set it back to SIL mode again (choose "YES" in the menu point "EN.SIL" and verify the configuration).
16. User interface

16.1 Scrolling help texts in display line 3

[01] Set correct password [PASS]
[02] Enter advanced setup [ADV.SET]
[03] Enable cable short circuit error indication [CA.SH]
[04] Enable cable breakage error indication? [CA.BR]
[05] Enable rail status signal output? [RAIL.ER]
[06] Enter language setup [SETUP]
[6/1] Enter password setup [SETUP]
[6/2] Enter display setup [SETUP]
[6/3] Enter rail setup [SETUP]
[6/4] Enter SIL setup [SETUP]
[07] Select Direct channel function [CH1.FUN] [CH2.FUN]
Select Inverted channel function [CH1.FUN] [CH2.FUN]
[09] Adjust LCD contrast [CONTRA]
[10] Adjust LCD backlight [LIGHT]
[12] Show Output state in display [D.OUT]
Show TAG in display
Alternate information shown in display
[13] Configuration SIL status (Open / Locked) [CONFIG]
[14] Enable SIL configuration lock [EN.SIL]
[15] Enable Password protection [EN.PASS]
[16] Set New password [NEW.PAS]
[17] Select Language [LANGUA]
[18] Cable short circuit [ICA.SH] [IIOFF]
[19] Cable breakage [ION] [IICA.BR]
16.2 Routing diagram

If no key is activated for 1 minute, the display will return to the default state 1.0 without saving configuration changes.

- Increase value / choose next parameter
- Decrease value / choose previous parameter
- Save the chosen value and proceed to the next menu
- Hold = Back to previous menu / return to menu 1.0 without saving.

Power up

- ON
- OFF

0000
PASSW.
Txt 1

0000
NO
ADV.SET
Txt 2

0000
NO
CA.BR
Txt 3

0000
NO
CA.SH
Txt 4

0000
NO
CH2.FUN
Txt 7

0000
NO
CH1.FUN
Txt 7

To default state 1.0

Line 1 shows status for channel 1 and channel 2.
Line 2 shows status for sensor 1.
Line 3 shows status for sensor 2.
Line 4 indicates whether the device is SIL-locked.

Red text signifies safety parameters in a SIL configuration. See safety manual for details.

*1.0 Default state.
Line 1 symbols:
\(\checkmark \) OK, Flashing \(\times \) error.
Line 2 and 3 symbols:
Input frequency > 1 Hz = \(\checkmark \) \(\times \)
Input frequency ≤ 1 Hz = \(\checkmark \) \(\times \)
Line 4 symbols:
Static dot = SIL-locked
Flashing dot = Not SIL-locked

*2 Only if password-protected.

*8 Branching to SIL from this point valid for:
4501 devices with serial no. lower than 211001001.
4511 devices with serial no from 211001001.

*9 Branching to SIL from this point valid for:
4511 devices with serial no from 211001001.
4512 devices with serial no from 211065001.
16.3 Routing diagram, advanced settings (ADV.SET)

- If password has been set.
- Not available on PR 4500 if SIL-locked.
 Only for 4512 devices with serial no. from 211065001 and for 4511 devices with serial no. from 211001001.
17. Connections

Inputs:

Channel 1
- NAMUR sensor, cable fault (1)
- Switch, cable fault (2)
- Switch, no cable fault (4)
- Switch, cable fault, disconnection (3)

Channel 2
- NAMUR sensor, cable fault (1)
- Switch, cable fault (2)
- Switch, no cable fault (4)
- Switch, cable fault, disconnection (3)

Outputs:

Channel 1
- Relay, N.C.
- Relay, N.O.
- Opto, NPN

Channel 2
- Relay, N.C.
- Relay, N.O.
- Opto, NPN

NC = no connection

\[R_p = 15 \, k\Omega \]
\[R_s = 750 \, \Omega \]
We are near you, all over the world

Our trusted red boxes are supported wherever you are

All our devices are backed by expert service and a 5-year warranty. With each product you purchase, you receive personal technical support and guidance, day-to-day delivery, repair without charge within the warranty period and easily accessible documentation.

We are headquartered in Denmark, and have offices and authorized partners the world over. We are a local business with a global reach. This means that we are always nearby and know your local markets well.

We are committed to your satisfaction and provide PERFORMANCE MADE SMARTER all around the world.

For more information on our warranty program, or to meet with a sales representative in your region, visit prelectronics.com.
 Benefit today from
PERFORMANCE MADE SMARTER

PR electronics is the leading technology company specialized in making industrial process control safer, more reliable and more efficient. Since 1974, we have been dedicated to perfecting our core competence of innovating high precision technology with low power consumption. This dedication continues to set new standards for products communicating, monitoring and connecting our customers’ process measurement points to their process control systems.

Our innovative, patented technologies are derived from our extensive R&D facilities and from having a great understanding of our customers’ needs and processes. We are guided by principles of simplicity, focus, courage and excellence, enabling some of the world’s greatest companies to achieve PERFORMANCE MADE SMARTER.

www.prelectronics.com