Produkthandbuch 5437 2-Draht HART 7 Temperaturmessumformer

TEMPERATUR | EX-SCHNITTSTELLEN | KOMMUNIKATIONSSCHNITTSTELLEN | MULTIFUNKTIONAL | TRENNER | ANZEIGEN

Nr. 5437V109-DE

Produktversion: 01.00.00-01.99.99

Die 6 Grundpfeiler unseres Unternehmens decken jede Kundenanforderung ab

Bereits als Einzelprodukt herausragend; in der Kombination unübertroffen

Dank unserer innovativen, patentierten Technologien können wir die Signalverarbeitung intelligenter und einfacher gestalten. Unser Portfolio setzt sich aus sechs Produktbereichen zusammen, in denen wir eine Vielzahl an analogen und digitalen Produkten bereitstellen, die in mehr als tausend Applikationen in der Industrie- und Fabrikautomation zum Einsatz kommen können. All unsere Produkte entsprechen den höchsten Industriestandards oder übertreffen diese sogar und gewährleisten einen zuverlässigen Betrieb. Selbst in den anspruchsvollsten Betriebsumgebungen. Die Gewährleistungszeit von 5 Jahren bietet unseren Kunden darüber hinaus absolute Sorgenfreiheit.

Temperature

Unser Produktangebot im Bereich Temperaturmessumformer und -sensoren bietet ein Höchstmaß an Signalintegrität zwischen Messpunkt und Prozessleitsystem. Sie können Industrieprozess-Temperatursignale in analoge, Bus- oder digitale Kommunikation umwandeln, und zwar mithilfe einer höchst zuverlässigen Punkt-zu-Punkt-Lösung und schneller Ansprechzeit, automatischer Selbstkalibrierung, Fühlerfehlererkennung, geringen Abweichungen und einer unübertroffenen EMV-Störfestigkeit in beliebigen Umgebungen.

Wir liefern die sichersten Signale, indem wir unsere Produkte nach den höchsten Sicherheitsstandards prüfen. Aufgrund unseres Innovationsengagements konnten wir Pionierleistungen bei der Entwicklung von Ex-Schnittstellen mit SIL 2 (Safety Integrity Level) mit vollständiger Prüfung erzielen, die sowohl effizient als auch kostengünstig sind. Unser umfassendes Sortiment an eigensicheren, analogen und digitalen Trennstrecken stellt multifunktionale Ein- und Ausgänge zur Verfügung. Auf diese Weise können Produkte von PR als einfach zu implementierender Standard vor Ort eingesetzt werden. Unsere Backplanes tragen zu einer weiteren Vereinfachung bei großen Installationen bei und ermöglichen eine nahtlose Integration in Standard-DCS-Systeme.

Communication

Wir liefern preiswerte, benutzerfreundliche, zukunftssichere Kommunikationsschnittstellen, mit denen Sie auf Ihre bereits vorhandenen PR-Produkte zugreifen können. All diese Schnittstellen sind abnehmbar, verfügen über ein digitales Display für die Anzeige der Prozesswerte und der Diagnosen und können über Taster konfiguriert werden. Die produktspezifischen Funktionen beinhalten die Kommunikation über Modbus und Bluetooth sowie den Fernzugriff mithilfe unserer PPS-App (PR Process Supervisor), die für iOS und Android erhältlich ist.

Unser einzigartiges Produktangebot an Einzelgeräten, die in verschiedenen Applikationen eingesetzt werden können, lässt sich problemlos als Standard vor Ort bereitstellen. Die Verwendung einer Produktvariante, die für verschiedene Anwendungsbereiche eingesetzt werden kann, reduziert nicht nur die Installationszeit und den Schulungsbedarf, sondern stellt auch eine große Vereinfachung hinsichtlich des Ersatzteilmanagements in Ihrem Unternehmen dar. Unsere Geräte wurden für eine dauerhafte Signalgenauigkeit, einen niedrigen Energieverbrauch, EMV-Störfestigkeit und eine einfache Programmierung entworfen.

Unsere kompakten, schnellen und hochwertigen 6-mm-Signaltrenner mit Mikroprozessortechnologie liefern eine herausragende Leistung und zeichnen sich durch EMV-Störfestigkeit aus - für dedizierte Applikationen bei äußerst niedrigen Gesamtkosten. Es ist eine vertikale und horizontale Anordnung der Trenner möglich; die Einheiten können direkt und ohne Luftspalt eingebaut werden.

Charakteristisch für die Anzeigen von PR electronics ist die Flexibilität und Robustheit. Weiterhin erfüllen die Displays nahezu alle Anforderungen zum Anzeigen von Prozesssignalen. Die Displays besitzen universelle Eingänge und eine universelle Spannungsversorgung. Sie ermöglichen eine branchenunabhängige Echtzeit-Messung Ihrer Prozessdaten und sind so entwickelt, dass sie selbst in besonders anspruchsvollen Umgebungen benutzerfreundlich und zuverlässig die notwendigen Informationen liefern.

2-Draht HART 7 Temperaturmessumformer 5437

Inhaltsverzeichnis

Anwendung	4
Technische Merkmale	4
Montage / Installation	4
Anwendungen	5
Bestellangaben	6
Zubehör	Е
Beispiele für Typenschilder	Е
Technische Daten	7
Mechanische Spezifikationen	16
LED-Funktion	17
Jumpers	17
Testpins	18
HART-Befehle	18
Erweiterte Funktionen	19
Zuordnung dynamischer Variablen	20
Übersicht der Geräte-Variablen	20
Schreibschutz mit Software	21
Schreibschutz mit Jumper	21
Ändern der HART-Protokollversion	21
SIL Funktionalität	23
Anschlüsse	24
Blockdiagramm	25
Programmierung	26
Anschluss von Sendern im Multidrop-Modus	27
ATEX Installationszeichnung	28
IECEx Installation Drawing	33
CSA Installation Drawing	38
FM Installation Drawing	41
Instalação INMETRO	46
NEPSI Installation Drawing	51
Appendix A: Diagnostics overview	53
Dokumentenverlauf	56

2-Draht HART 7 Temperaturmessumformer 5437

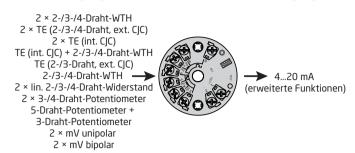
- Eingang: WTH, Thermoelement, Potentiometer, linearer Widerstand und mV bipolar
- Einzel- oder echter Dualeingang mit Sensorredundanz und Sensordrifterkennung
- Großer Betriebstemperaturbereich von -50 bis +85°C
- Summe Genauigkeit ab 0,014%
- Galvanische Trennung 2,5 kVAC
- Vollständige Prüfung gemäß IEC 61508: 2010 für SIL-2/3-Anwendungen

Anwendung

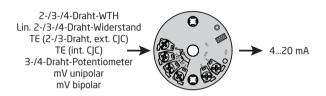
- Temperaturmessung bei einer Vielzahl von Thermoelement- und WTH-Typen.
- Umwandlung zahlreicher linearer Widerstands- und Potentiometereingänge im 4...20 mA.
- Umwandlung bipolarer mV-Signale im 4...20 mA.
- Integration in Anlagenmanagementsysteme.
- Kritische Anwendungen, die eine hohe Genauigkeit und /oder Sensorredundanz und Sensordrifterkennung erfordern.

Technische Merkmale

- Echter Dualeingangsumformer. 7-Terminal-Design mit hoher Dichte zur Aufnahme einer Vielzahl verschiedener Dualeingangskombinationen.
- Sensorredundanz: Ausgang schaltet automatisch auf sekundären Sensor um, falls der primäre Sensor ausfällt, dadurch keine Ausfallzeit.
- Sensordrifterkennung: Warnung, wenn das Sensordifferential die vom Nutzer definierten Grenzwerte überschreitet, dadurch optimierte Wartung.
- Zuordnung dynamischer Variablen für Prozessdaten zusätzlich zur primären Variablen, z. B. Dualeingangsfunktionen wie Mittelwert, Differential und Verfolgung von Minimal-/Maximalwerten.
- Herausragende Genauigkeit bei Digital- und Analogsignalen über die gesamte Eingangsspanne und bei allen Umgebungsbedingungen.
- Umfassende Sensoranpassung, einschließlich Callendar-Van Dusen und nutzerdefinierte Linearisierungsoptionen.
- Programmierbare Eingangsgrenzbereiche mit Laufzeitmessung zur besseren Prozessnachverfolgbarkeit und Erkennung von Sensoren außerhalb der Toleranzen.
- Vollständige Prüfung gemäß IEC 61508: 2010 bis SIL 3, zusammen mit erweiterter funktionaler EMV-Sicherheitsprüfung gemäß IEC 61236-3-1.
- Die Ausfallraten für 5437xxSx entsprechen dem Performance Level (PL) "d" gemäß ISO-13849.
- Erfüllt NAMUR NE21, NE43, NE44, NE89, NE95 und liefert Diagnoseinformationen gemäß NE107.


Montage / Installation

- Für die Sensorkopfmontage DIN-Form B.
- Konfiguration über Standard-HART-Kommunikationsschnittstellen oder über Loop Link PR 5909.
- 5437A: Montage in Zone 2 sowie 22 möglich einschließlich Class I, Division 2, Groups A, B, C, D.
- 5437B: Montage in Zonen 0, 1 und 2 sowie 21 und 22 möglich, einschließlich M1.
- 5437D: Montage in Zonen 0, 1 und 2 sowie 21 und 22 möglich, einschließlich M1 / Class I, Division 1, Gr. A, B, C, D.


Anwendungen

Dualeingang

Eingang Ausgang

Einzeleingang

Bestellangaben

Тур	Version		Version Eingänge		SIL- Zulassung		Marine- Zulassung	
5437	Allgemeine Zwecke /	: A	Einzeleingang (4 Klemmen)	:1	SIL	: S	Ja	: M
	Zone 2 / DIV. 2		Dualeingang (7 Klemmen)	: 2	Kein SIL	:-	Nein	:-
	Zone 0, 1, 2, 21, 22, M1 (nur ATEX)	: B						
	Zone 0, 1, 2, 21, 22, M1 / DIV. 1, DIV. 2	: D						

Zubehör

5909	=	PReset PC-software für USB-Anschluss
277	=	HART-Modem, USB
1125	=	Akkreditiertes Kalibrierzertifikat, Einzeleingang, 3 Punkte
1126	=	Akkreditiertes Kalibrierzertifikat, Dualeingang, 3 Punkte
1127	=	Akkreditiertes Kalibrierzertifikat, Einzeleingang, 5 Punkte
1128	=	Akkreditiertes Kalibrierzertifikat, Dualeingang, 5 Punkte

Beispiele für Typenschilder

5437A2SM

5437B2SM

	PR electronics A/S				Ver:Namur NE53 8
5437R2SM	Lerbakken 10 DK-8410 Roende Made in Denmark SN:123456789	€x 0344	II 1G Ex ia IIC T6T4 Ga II 2(1) G Ex ib [ia Ga] IIC T6T4 Gb II 2 D Ex ia IIIC Db I M1 Ex ia I Ma See Installation drawing 54370A01	Ui: 30V Ii: 120 mA Pi: see install Ci: 1nF Li: 0	EU RO:MRA0000023 75 SIL:PREI 16031107 Install::SN5437 7ag: Tag1234

5437D2SM

Technische Daten

Umgebungsbedingungen:

Umgebungstemperaturspanne:	
Ctandard	

 Standard.
 -50°C bis +85°C

 SIL
 -40°C bis +80°C

 Lagertemperatur
 -50°C bis +85°C

 Malibriary partemperatur
 22.25°C

Relative Luftfeuchtigkeit..... < 99% RH (nicht kond.)

Mechanische Spezifikationen:

 Abmessungen
 ...
 Ø 44 x 21,45 mm

 Durchmesser Zentralbohrung
 ...
 Ø 6,35 mm / ¼ in

Leitungsquerschnitt......1 x1,5 mm² Litzendraht

 Abisolierlänge, Drähte.
 7 mm

 Klemmschraubenanzugsmoment
 0,4 Nm

 Schwingungen
 IEC 60068-2-6

 2...25 Hz
 ±1.6 mm

 25...100 Hz
 ±4 g

Allgemeine Spezifikationen:

Versorgungsspannung, DC:

Min. Lastwiderstand bei > 37 V Versorgungsspannung (Versorgungsspannung - 37) / 23 mA

Isolationsspannung, Test/Betrieb:

 5437A
 2,5 kVAC / 55 VAC

 5437B und 5437D
 2,5 kVAC / 42 VAC

 Polaritätsschutz
 Alle Ein- und Ausgänge

 Schreibschutz
 Jumper oder Software

+0.18% d. Sp. / 5 Jahr

Einfluss von Änderung der Versorgungsspannung..... < 0,005% d. Sp. / VDC

^{*} Anmerkung: Beachten Sie, dass die minimale Versorgungsspannung dem an den Klemmen des PR 5437 gemessenen Wert entsprechen muss, d. h., alle externen Spannungsabfälle müssen berücksichtigt werden.

^{**} Anmerkung: Schützen Sie das Gerät mithilfe einer geeigneten Stromversorgung oder geeigneter Überspannungsschutzeinrichtungen vor Überspannungen.

Eingangsgenauigkeiten:

Grundwerte					
Eingangsart	Grundgenauigkeit	Temperaturkoeffizent			
Pt10	≤ ±0,8°C	≤ ±0,020°C / °C			
Pt20	≤ ±0,4°C	≤ ±0,010°C / °C			
Pt50	≤ ±0,16°C	≤ ±0,004°C / °C			
Pt100	≤ ±0,04°C	≤ ±0,002°C / °C			
Pt200	≤ ±0,08°C	≤ ±0,002°C / °C			
Pt500	$T_{max.} \le 180^{\circ}\text{C}: \le \pm 0,08^{\circ}\text{C}$ $T_{max.} > 180^{\circ}\text{C}: \le \pm 0,16^{\circ}\text{C}$	≤ ±0,002°C / °C			
Pt1000	≤ ±0,08°C	≤ ±0,002°C / °C			
Pt2000	T _{max.} ≤ 300°C: ≤ ±0,08°C T _{max.} > 300°C: ≤ ±0,40°C	≤ ±0,002°C / °C			
Pt10000	≤ ±0,16°C	≤ ±0,002°C / °C			
Pt x	Größte Toleranz benachbarter Punkte	Größter Temperaturkoeffizient benachbarter Punkte			
Ni10	≤ ±1.6°C	≤ ± 0,020°C / °C			
Ni20	≤ ±0,8°C	≤ ± 0,010°C / °C			
Ni50	≤ ± 0,32°C	≤ ± 0,004°C / °C			
Ni100	≤ ±0,16°C	≤ ± 0,002°C / °C			
Ni120	≤ ±0,16°C	≤ ± 0,002°C / °C			
Ni200	≤ ±0,16°C	≤ ± 0,002°C / °C			
Ni500	≤ ±0,16°C	≤ ± 0,002°C / °C			
Ni1000	≤ ±0,16°C	≤ ± 0,002°C / °C			
Ni2000	≤ ±0,16°C	≤ ± 0,002°C / °C			
Ni10000	≤ ±0,32°C	≤ ± 0,002°C / °C			
Ni x	Größte Toleranz benachbarter Punkte	Größter Temperaturkoeffizient benachbarter Punkte			
Cu5	≤ ±1,6°C	≤ ± 0,040°C / °C			
Cu10	≤ ±0,8°C	≤ ± 0,020°C / °C			
Cu20	≤ ± 0,4°C	≤ ± 0,010°C / °C			
Cu50	≤ ± 0,16°C	≤ ± 0,004°C / °C			
Cu100	≤ ±0,08°C	≤ ± 0,002°C / °C			
Cu200	≤ ±0,08°C	≤ ± 0,002°C / °C			
Cu500	≤ ±0,16°C	≤ ± 0,002°C / °C			
Cu1000	≤ ±0,08°C	≤ ± 0,002°C / °C			
Cu x	Größte Toleranz benachbarter Punkte	Größter Temperaturkoeffizient benachbarter Punkte			
Lin. R, 0400 Ω	≤ ±40 mΩ	≤ ±2 mΩ / °C			
Lin. R: 0100 kΩ	≤ ±4 Ω	≤ ±0,2 Ω / °C			
Potentiometer: 0100%	<0,05%	<±0,005%			

 $^{^*}$ Eingangstemperaturkoeffizienten entsprechen den angegebenen Werten oder [0,002% von Messwert] / $^\circ$ C (je nachdem, welcher Wert größer ist).

Grundwerte						
Eingangsart	Grundgenauigkeit	Temperaturkoeffizent				
mV: -20100 mV	≤ ±5 µV ≤ ± 0,01% von Messwert**	≤ ±0,2 µV / °C				
mV: -1001700 mV	≤ ± 0,1mV ≤ ± 0,01% von Messwert**	≤ ±36 µV / °C				
mV: ±800 mV	≤ ± 0,1mV ≤ ± 0,01% von Messwert**	≤ ±32 µV / °C				
TE E	≤ ±0,2°C ≤ ± 0,01% von Messwert**	≤ ±0,025°C / °C				
TEJ	≤ ±0,25°C ≤ ± 0,01% von Messwert**	≤ ±0,025°C / °C				
TE K	≤ ±0,25°C ≤ ± 0,01% von Messwert**	≤ ±0,025°C / °C				
TEL	≤ ±0,35°C ≤ ± 0,01% von Messwert**	≤ ±0,025°C / °C				
TE N	≤ ±0,4°C ≤ ± 0,01% von Messwert**	≤ ±0,025°C / °C				
TE T	≤ ±0,25°C ≤ ± 0,01% von Messwert**	≤ ±0,025°C / °C				
TE U	<pre><0°C: ≤ ±0,8°C ≤ ± 0,01% von Messwert** ≥0°C: ≤ ±0,4°C ≤ ± 0,01% von Messwert**</pre>	≤ ±0,025°C / °C				
TE Lr	≤ ±0,2°C ≤ ± 0,01% von Messwert**	≤ ±0,1°C / °C				
TE R	<200°C: ≤ ±0,5°C ≤ ± 0,01% von Messwert** ≥200°C: ≤ ±1,0°C ≤ ± 0,01% von Messwert**	≤ ±0,1°C / °C				
TE S	<200°C: ≤ ±0,5°C ≤ ± 0,01% von Messwert** ≥200°C: ≤ ±1,0°C ≤ ± 0,01% von Messwert**	≤ ±0,1°C / °C				
TE W3	≤ ±0,6°C ≤ ± 0,01% von Messwert**	≤ ±0,1°C / °C				
TE W5	≤ ±0,4°C ≤ ± 0,01% von Messwert**	≤ ±0,1°C / °C				
TE Typ: B¹	≤ ±1°C ≤ ± 0,01% von Messwert**	≤ ±0,1°C / °C				
TE Typ: B ²	≤ ±3°C ≤ ± 0,01% von Messwert**	≤ ±0,1°C / °C				
TE Typ: B ³	≤ ±8°C ≤ ± 0,01% von Messwert**	≤ ±0,8°C / °C				
TE Typ: B⁴	nicht angegeben	nicht angegeben				
CJC (intern)	< ±0,5°C	In Basiswerte enthalten				
CJC (extern)	≤ ±0,08°C	≤ ±0,002°C / °C				

 $^{^*}$ Eingangstemperaturkoeffizienten entsprechen den angegebenen Werten oder [0,002% von Messwert] / °C (je nachdem, welcher Wert größer ist).

^{**} Verstärkungsabweichung.

TE B¹ Genauigkeit Spezifikationsbereich	> 400°C
TE B ² Genauigkeit Spezifikationsbereich	> 160°C < 400°C
TE B ³ Genauigkeit Spezifikationsbereich	> 85°C < 160°C
TE B ⁴ Genauigkeit Spezifikationsbereich	< 85°C

Ausgangsgenauigkeiten:

Grundwerte				
Ausgangstyp	Basisgenauigkeit	Temperaturkoeffizient		
Mittelwert- messung	Mittelwert der Genauigkeit von Eingang 1 und Eingang 2	Mittelwert des Temperaturkoeffizienten von Eingang 1 und Eingang 2		
Differential- messung	Summe der Genauigkeit von Eingang 1 und Eingang 2	Summe des Temperaturkoeffizienten von Eingang 1 und Eingang 2		
Analogausgang	≤ ±1,6 µA (0,01 % d. vollen Ausgangssp.)	≤ ±0,48 µA/K (≤ ±0,003 % d. vollen Ausgangssp. / K)		

Beispielrechnungen Genauigkeit:

Beispiel: Pt100-Sensor, für −200°C bis +850°C konfiguriert:

$$Pt100_{Grundgenauigkeit} = 0,04^{\circ}C$$

$$Ausgang_{Analoggenauigkeit} = 0,0016 \text{ mA}$$

$$Summe_{Genauigkeit} (mA) = \frac{Grund_{Genauigkeit}}{Konfigurierte_Spanne_{EINGANG}} \times 16,0 \text{ mA} + Ausgang_{Analoggenauigkeit}$$

$$Summe_{Genauigkeit} (mA) = \frac{0,04^{\circ}C}{850^{\circ}C - (-200^{\circ}C)} \times 16,0 \text{ mA} + 0,0016 \text{ mA} = 0,0022 \text{ mA}$$

$$Summe_{Genauigkeit} (\%) = \frac{Summe_{Genauigkeit} (mA)}{16,0 \text{ mA}} \times 100\%$$

$$Summe_{Genauigkeit} (\%) = \frac{0,0022 \text{ mA}}{16.0 \text{ mA}} \times 100\% = 0,01381\%$$

Beispiel: Thermoelement Typ K, interne CJC, Messwert 400°C, Spanne 0°C bis 400°C:

Typ K TE_{Grundgenauigkeit} = 0,25°C

Ausgang Analoggenauigkeit = 0,0016 mA

Summe Genauigkeit (mA) =
$$\frac{\text{Grund}_{Genauig.} + \text{Int. CJC} + (\text{Verstärkungsabweichung x Messwert})}{\text{Konfigurierte_Spanne}_{Eingang}} \times 16,0 \text{ mA} + \text{Ausgang}_{Analoggenauigkeit}$$

Summe Genauigkeit (mA) =
$$\frac{0,25^{\circ}\text{C} + 0,5^{\circ}\text{C} + (0,0001 \times 400)}{400^{\circ}\text{C}} \times 16,0 \text{ mA} + 0,0016 \text{ mA} = \underline{0,0332 \text{ mA}}$$

Summe Genauigkeit (%) =
$$\frac{\text{Summe}_{Genauigkeit}(mA)}{16,0 \text{ mA}} \times 100\%$$

Summe Genauigkeit(%) =
$$\frac{0,0332 \text{ mA}}{16,0 \text{ mA}} \times 100\% = \underline{0,2075\%}$$

Beispiel: Thermoelement Typ K, externe CJC, Pt1000, Messwert 400°C, Spanne 0°C bis 400°C:

Typ K TE Grundgenauigkeit = 0,25°C

Ausgang Analoggenauigkeit = 0,0016 mA

Summe Genauigkeit (mA) =
$$\frac{\text{Summe Genauigk.} + \text{Ext. CJC} + (\text{Verstärkungsabweichung x Messwert})}{\text{Konfigurierte_Spanne}_{\textit{Eingang}}} \times 16,0 \text{ mA} + \text{Ausgang Analoggenauigkeit}$$

Summe Genauigkeit (mA) =
$$\frac{0,25^{\circ}\text{C} + 0,08^{\circ}\text{C} + (0,0001 \times 400)}{400^{\circ}\text{C}} \times 16,0 \text{ mA} + 0,0016 \text{ mA} = \underline{0,0164 \text{ mA}}$$

Summe Genauigkeit (%) =
$$\frac{\text{Summe Genauigkeit (mA)}}{16,0 \text{ mA}} \times 100\%$$

Summe Genauigkeit (%) =
$$\frac{0,0164 \text{ mA}}{16.0 \text{ mA}} \times 100\% = \underline{0,1025\%}$$

Für die exemplarischen Genauigkeitsberechnungen wird die werksseitig kalibrierte Umgebungstemperatur angenommen. Andere zu berücksichtigende potenzielle Fehlerquellen wie Stromversorgungseffekte, Schwankungen der Umgebungstemperatur usw. wurden dabei außer Acht gelassen.

EMV-Immunitätswirkung
Erweiterte EMV-Immunität:
NAMUR NE 21, A Kriterium, Burst < ±1% d. Sp.

Eingangsspezifikationen:

WTH-Eingangstypen:

WTH- Typ	Norm	Min. Wert	Max. Wert	α	Min. Spanne
Pt1010.000	IEC 60751 JIS C 1604-8 GOST 6651-2009 Callendar Van Dusen	-200°C -200°C -200°C -200°C	+850°C +649°C +850°C +850°C	0,003851 0,003916 0,003910	10°C 10°C 10°C 10°C
Ni1010.000	DIN 43760-1987 GOST 6651-2009 / OIML R84:2003	-60°C -60°C	+250°C +180°C	0,006180 0,006170	10°C 10°C
Cu51000	Edison Copper Winding No. 15 GOST 6651-2009 / OIML R84:2003 GOST 6651-94	-200°C -180°C -50°C	+260°C +200°C +200°C	0,004270 0,004280 0,004260	100°C 100°C 100°C

Effekt des Sensorkabelwiderstands (3-/4-Draht). < 0,002 Ω/Ω

Ni1000 & NI10000)

Max. 50 nF (alle anderen Sensoren)

Sensorfehlererkennung, programmierbar Keiner, Kurzgeschlossen, Defekt,

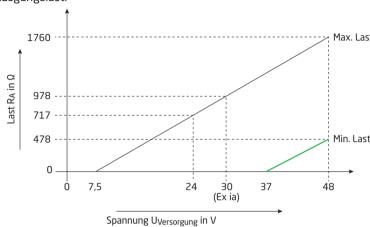
Kurzgeschlossen oder defekt

ANMERKUNG: Unabhängig von der Konfiguration der Sensorfehlererkennung wird die Erkennung von Sensorkurzschlüssen deaktiviert, falls der untere Grenzwert für den konfigurierten Sensortyp unter der konstanten Erkennungsgrenze für kurzgeschlossene Sensoren liegt

Sensorfehler-Erkennungszeit (WTH-Element). ≤ 70 ms Sensorfehler-Erkennungszeit (für 3. und 4. Draht). ≤ 2000 ms

TE-Eingangstypen:

	Min.	Max.	Min.	
Тур	Temperatur	Temperatur	Spanne	Norm
В	0 (85)°C	+1820°C	100°C	IEC 60584-1
E	-200°C	+1000°C	50°C	IEC 60584-1
J	-100°C	+1200°C	50°C	IEC 60584-1
K	-180°C	+1372°C	50°C	IEC 60584-1
L	-200°C	+900°C	50°C	DIN 43710
Lr	-200°C	+800°C	50°C	GOST 3044-84
N	-180°C	+1300°C	50°C	IEC 60584-1
R	-50°C	+1760°C	100°C	IEC 60584-1
S	-50°C	+1760°C	100°C	IEC 60584-1
T	-200°C	+400°C	50°C	IEC 60584-1
U	-200°C	+600°C	50°C	DIN 43710
W3	0°C	+2300°C	100°C	ASTM E988-96
W5	0°C	+2300°C	100°C	ASTM E988-96


Vergleichsstellenkompensation (CIC): Konstant, intern oder extern über Pt100 oder Ni100-Fühler Externe CIC, Kabelwiderstand pro Draht (bei 3- und 4-Draht-Anschlüssen) . . 50 Ω Effekt des Sensorkabelwiderstands (bei 3-/4-Draht-Anschlüssen) < 0,002 Ω/Ω Sensorfehlererkennung, programmierbar Keiner, Kurzgeschlossen, Defekt, Kurzgeschlossen oder defekt Sensorfehlererkennung für kurzgeschlossenen Sensorf gilt nur für den CJC-Sensor. Sensorfehler-Erkennungszeit (TE) ≤ 70 ms Sensorfehler-Erkennungszeit, externe CJC (für 3. und 4. Draht) ≤ 2000 ms **Eingang linearer Widerstand:** Max. 50 nF (lin. Widerstand \leq 400 Ω) Sensorfehlererkennung, programmierbar Keiner, Defekt Potentiometereingang: Effekt des Sensorkabelwiderstands (4-/5-Draht). < 0,002 Ω/Ω Max. 50 nF (Potentiometer \leq 400 Ω) Sensorfehlererkennung, programmierbar Keiner, Kurzgeschlossen, Defekt, Kurzgeschlossen oder defekt ANMERKUNG: Unabhängig von der Konfiguration der Sensorfehlererkennung wird die Erkennung von Sensorkurzschlüssen deaktiviert, falls die konfigurierte Potentiometergröße unter der konstanten Erkennungsgrenze für kurzgeschlossene Sensoren liegt. Sensorfehler-Erkennungszeit, Wischerarm ≤ 70 ms (keine Sensorkurzschlusserkennung) Sensorfehler-Erkennungszeit (für 4. und 5. Draht). ≤ 2000 ms mV-Eingang: -100 bis 1700 mV Max. 50 nF (Eingangsbereich: -20...100 mV) Sensorfehlererkennung, programmierbar Keiner, Defekt

Ausgangsspezifikationen und HART:

Normaler Bereich, programmierbar	3,820,5 / 20,53,8 MA
Erweiterter Bereich (Ausgangsgrenzen), programmierbar	3,523 / 233,5 mA
Aktualisierungszeit	10 ms
Last (bei Stromausgang)	\leq (V _{Versorgung} - 7,5) / 0,023 [Ω]
l aststahilität	< 0.01% d Sn / 100.0

Sp. = aktuell ausgewählter Bereich

Ausgangslast:

Sensorfehlererkennung, programmierbar
(Erkennung von Sensorkurzschlüssen wird bei TE- und mV-Eingängen ignoriert)
NAMUR NE43 Upscale
NAMUR NE43 Downscale
HART-Protokoll-Versionen

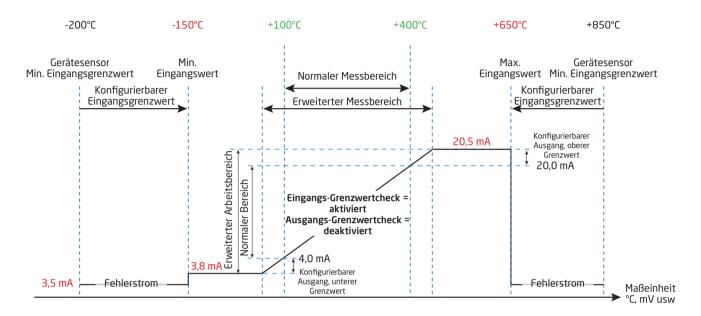
Programmierbare Eingangs-/Ausgangsgrenzwerte:

Fehlerstrom	 Aktivieren / deaktivieren
Einstellung Fehlerstrom	 3,5 mA23 mA

Zur Erhöhung der Systemsicherheit und -integrität können Grenzwerte für den Eingang und Stromausgang programmiert werden.

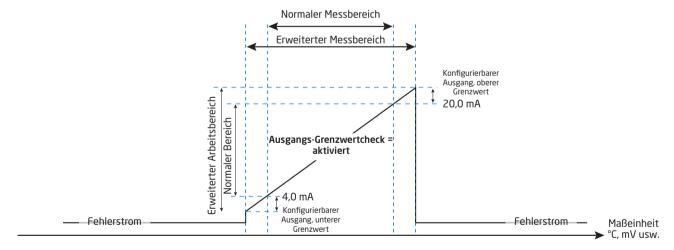
Eingang:

Wenn das Eingangssignal den unteren oder oberen programmierbaren Grenzwert unter- bzw. überschreitet, gibt das Gerät einen nutzerdefinierten Fehlerstrom aus. Durch die Festlegung von Eingangsgrenzwerten wird sichergestellt, dass Messungen außerhalb des Bereichs eindeutig erkannt und über den Messumformerausgang gemeldet werden können. Dies hat Vorteile hinsichtlich Geräte- und Materialsicherheit, z. B. kann dadurch die thermische Instabilität von Reaktionsabläufen verringert werden.


Beispiel:

Pt100-Eingang im Bereich 100°C bis 400°C

Eingangsgrenzwerte: oberer = +650°C, unterer = -150°C


Fehlerstrom auf 3,5 mA eingestellt

Ausgangsgrenzwerte: oberer = 20,5 mA, unterer = 3,8 mA

Ausgang:

Wenn der Stromausgang den oberen oder unteren programmierbaren Grenzwert über- bzw. unterschreitet, gibt das Gerät einen nutzerdefinierten Fehlerstrom aus.

Eingehaltene Behördenvorschriften:

 EMV
 2014/30/EU & UK SI 2016/1091

 ATEX
 2014/34/EU & UK SI 2016/1107

 RoHS
 2011/65/EU & UK SI 2012/3032

 EAC
 TR-CU 020/2011

Zulassungen:

EU RO Mutual Recognition Type Approval MRA0000023

Ex- / I.S.-Zulassungen:

5437A:

ATEX DEKRA 18ATEX0135 X

5437B:

ATEX..... DEKRA 16ATEX0047 X

5437D:

ATEX..... DEKRA 16ATEX0047 X

5437A und 5437D:

IECEx. IECEx DEK. 16.0029 X

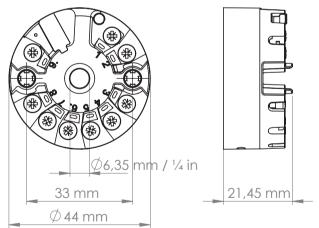
c FM us FM16CA0146X / FM16US0287X

EAC Ex..... EAEU KZ 7500361.01.01.08756

Funktionale Sicherheit:

SIL 2, vollständig geprüft und zertifiziert gemäß IEC 61508: 2010

SFF > 93 % - Komponente Typ B


SIL-3-konform dank redundanter Struktur (HFT = 0; 1002)

FMEDA-Bericht: www.prelectronics.de

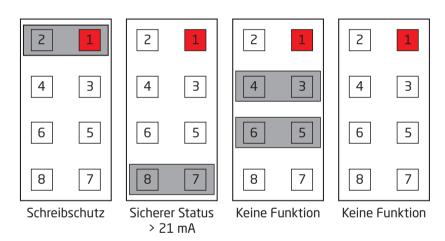
NAMUR:

NE95-Bericht Bitte kontaktieren Sie uns

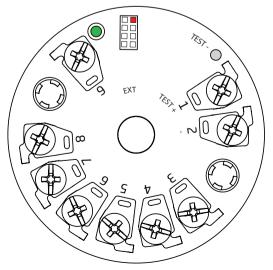
Mechanische Spezifikationen

LED-Funktion

Onboard-LED gibt die Fehler laut NAMUR NE44 und NE107 an.

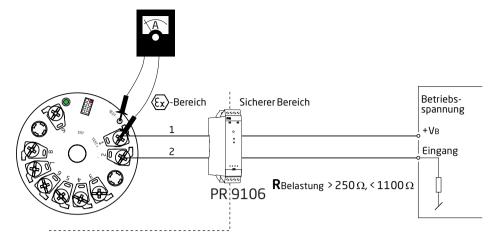

Zustand	Grüne/rote LED
Gerät OK	Konstant
Keine Stromversorgung	AUS
Anzeige geräteunabhängiger Fehler, z.B. Kabelbruch, Sensorkurzschluss, Über-/Unterschreitung der Eingangs- / Ausgangsgrenzwerte	Blinkt
Gerätefehler	Konstant

Ausführliche Informationen zur Gerätediagnose und NE107-Meldungen finden Sie in Anhang A auf Seite 53.


Jumpers

Das Gerät hat zwei interne Jumper: Einer dient dazu, den Schreibschutz zu aktivieren; mit dem zweiten kann festgelegt werden, dass der Ausgangsstrom im sicheren Status 21 mA überschreiten soll (gemäß NAMUR NE43).

Falls kein Jumper verwendet wird, liegt der Ausgangsstrom im sicheren Status unter 3,6 mA (gemäß NAMUR NE43).



Jumper Nr. 1 ist in der Zeichnung rot markiert.

Testpins

Die Testpins ermöglichen die direkte Messung des Schleifenstroms unter Beibehaltung der Schleifenintegrität. Während der Verwendung des Testpins muss der Messumformer an eine Spannungsquelle angeschlossen sein.

Warnung!

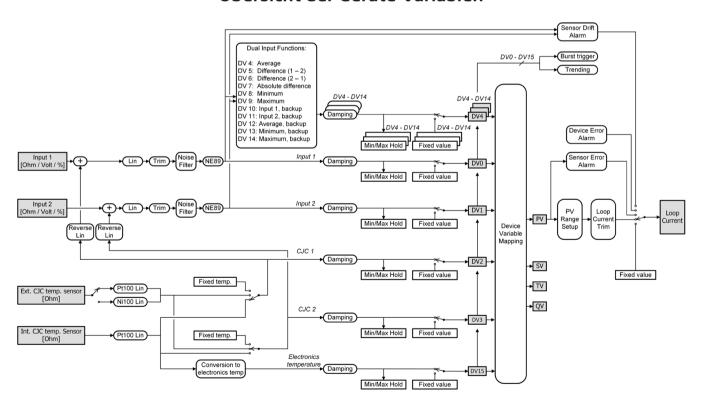
Bei der Installation in Gefahrenbereichen darf nur zertifizierte Testausrüstung verwendet werden.

HART-Befehle

Weitere Informationen und Defintionen zu HART-Befehlen des 5437 befinden sich in dem Dokument "5437 HART Feldgeräte Spezifikation" (Field Device Specification).

Erweiterte Funktionen

Funktion	Beschreibung		
Differential	Das Analogausgangssignal ist proportional zur Differenz zwischen den Messungen von Eingang 1 und Eingang 2. Analogausgang = Eingang 1 – Eingang 2 oder Eingang 2 – Eingang 1 oder Eingang 2 – Eingang 1		
Mittelwertmessung	Das Analogausgangssignal ist proportional zum Mittelwert der Messungen von Eingang 1 und Eingang 2. Analogausgang = 0,5 * (Eingang 1 + Eingang 2)		
Max.	Das Analogausgangssignal ist proportional zum Eingang mit dem höchsten Wert. WENN (Eingang 1 > Eingang 2), DANN Analogausgang = Eingang 1, SONST Analogausgang = Eingang 2		
Min.	Das Analogausgangssignal ist proportional zum Eingang mit dem niedrigsten Wert. WENN (Eingang 1 < Eingang 2), DANN Analogausgang = Eingang 1, SONST Analogausgang = Eingang 2		
Sensordrift	Falls das Differential zwischen den von Eingang 1 und Eingang 2 gemessenen Werten einen vordefinierten Grenzwert überschreitet, dann wird ein Sensordriftfehler angezeigt. WENN ABS (Eingang 1 – Eingang 2) > Grenzwert Sensordrift, DANN Anzeige Sensordriftfehler		
Redundanz (Hot-Backup)	Der Analogausgang ist proportional zu Eingang 1, solange kein Fehler erkannt wird und sich der Eingang innerhalb der benutzerdefinierten Grenzwerte befindet. Falls ein Sensorfehler bei Eingang 1 erkannt wird oder wenn der Wert des Sensors 1 sich außerhalb der benutzerdefinierten Grenzwerte befindet, ist der Analogausgang proportional zu Eingang 2 und eine Warnmeldung wird ausgegeben. WENN (Kein Sensorfehler bei Eingang 1 UND Eingang 1 innerhalb der Grenzwerte), DANN Analogausgang = Eingang 1 SONST: WENN (Kein Sensorfehler bei Eingang 2 UND Eingang 2 innerhalb der Grenzwerte), DANN Analogausgang = Eingang 2		
Nutzerdefinierte Linearisierung – polynomischer Typ	Unterstützt die polynomische Linearisierung von bis zu 5 Segmenten, jeweils bis zum Polynom 5. Grades.		
Nutzerdefinierte Lineari- sierung – Callendar-Van Dusen	Unterstützt die direkte Eingabe von CVD-Konstanten.		
Nutzerdefinierte Linearisierung – tabellarische Linearisierung	Unterstützt die tabellarische Linearisierung mit bis zu 60 Ein-/Aus-Werten.		
Nutzerdefinierte Linearisierung - Spline-2 Grades-Linearisierung	Unterstützt die Spline-2Grades-Linearisierung mit bis zu 40 Ausgangswerten.		
Laufzeitmessung - Messumformerelektronik	Erfassung interner Messumformertemperaturen im laufenden Betrieb; Zeitaufwand wird für jeden der 9 festen Teilmessbereiche protokolliert. < -50°C -5030°C -3010°C -10+10°C +10+30°C +30+50°C +50+70°C +70+85°C >85°C 		
Laufzeitmessung - Eingänge	Erfassung der Eingangsmesswerte im laufenden Betrieb; Zeitaufwand wird für jeden der 9 festen Teilmessbereiche protokolliert. Die Teilmessbereiche werden für jeden Eingangstyp separat festgelegt.		
Schleppzeiger - Messumformerelektronik	Erfassung der min./max. internen Messumformertemperatur über die gesamte Nutzungsdauer des Gerätes		
Schleppzeiger - Eingänge	Min./max. Eingangsmesswerte werden erfasst und gespeichert. Bei Änderung der Messkonfiguration werden die Werte zurückgesetzt.		


Zuordnung dynamischer Variablen

Es werden vier dynamische Variablen unterstützt: PV, SV, TV und QV.

Mithilfe von HART-Befehlen können diese Variablen in allen möglichen Kombinationen jeder beliebigen Gerätevariable (DV 0-15) zugeordnet werden. Die Gerätevariable, die der Variable PV zugeordnet wird, steuert den Schleifenstrom.

Geräteva	Gerätevariablen		
DV0	Eingang 1 (Temperatur, Spannung, Widerstand usw.)		
DV1	Eingang 2 (Temperatur, Spannung, Widerstand usw.)		
DV2	CJC 1, Temperatur Eingang 1 CJC. Nur gültig, wenn Eingang 1 ein Thermoelementeingang ist.		
DV3	CJC 2, Temperatur Eingang 2 CJC. Nur gültig, wenn Eingang 2 ein Thermoelementeingang ist.		
DV4	Mittelwert von Eingang 1 und Eingang 2		
DV5 Differenz Eingang 1 – Eingang 2			
DV6 Differenz Eingang 2 – Eingang 1			
DV7 Absolute Differenz (Eingang 1 – Eingang 2)			
DV8 Minimum (Eingang 1, Eingang 2)			
DV9	DV9 Maximum (Eingang 1, Eingang 2)		
DV10	Eingang 1 mit Eingang 2 als Reserve		
DV11	DV11 Eingang 2 mit Eingang 1 als Reserve		
DV12	DV12 Mittelwert von Eingang 1 und Eingang 2, beide Eingänge als Reserve		
DV13	0V13 Minimum von Eingang 1 und Eingang 2, beide Eingänge als Reserve		
DV14	4 Maximum von Eingang 1 und Eingang 2, beide Eingänge als Reserve		
DV15 Temperatur der Elektronik			

Übersicht der Geräte-Variablen

Schreibschutz mit Software

Werkseitig ist als aktives Standardpasswort "******* vorgegeben. Dieses Passwort kann vom Nutzer geändert werden. Wenn das aktive Passwort nicht bekannt ist, wenden Sie sich bitte an den PR electronics Kundensupport unter <u>www.</u> prelectronics.com/de/contact.

Bei Passwortänderungen können nur in Latin-1 codierte Zeichen eingegeben und angezeigt werden.

lst der Schreibschutz aktiviert, werden – unabhängig von der Position des Schreibschutz-Hardwarejumpers – keine Schreibbefehle akzeptiert.

Schreibschutz mit Jumper

Befindet sich der Hardwarejumper in der Schreibschutzposition, werden keine Schreibbefehle akzeptiert - auch wenn der Software-Schreibschutz deaktiviert ist.

Ändern der HART-Protokollversion

Die HART-Protokollversion der Einheit kann mithilfe der Software PReset und einer Loop-Link-Schnittstelle PR 5909 oder einer HART-Schnittstelle geändert werden.

Auch andere HART-Konfigurationstools wie tragbare HART-Terminals können verwendet werden.

So wird der PR 5437 mithilfe eines tragbaren HART-Terminals von HART 7 auf HART 5 (oder umgekehrt) umgestellt:

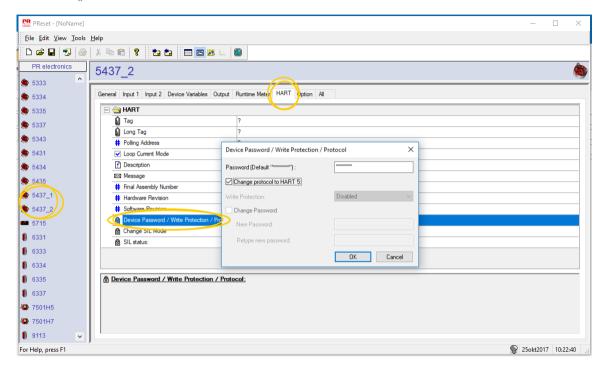
Umstellung des PR 5437 von HART 7 auf HART 5:

- 1. Öffnen Sie das Gerätemenü oder drücken Sie die Starttaste. Danach wird das Onlinemenü angezeigt.
- 2. Wählen Sie **Device Setup** (Geräteeinrichtung) aus und drücken Sie die rechte Pfeiltaste. Alternativ können Sie auch einfach "7" drücken.
- 3. Wählen Sie **Diagnostics/Service** (Diagnose/Wartung) aus und drücken Sie die rechte Pfeiltaste. Alternativ können Sie auch einfach "3" drücken.
- 4. Wählen Sie **Write Protection** (Schreibschutz) aus und drücken Sie die rechte Pfeiltaste. Alternativ können Sie auch einfach "6" drücken.
- 5. Wählen Sie **Change to HART 5** (Auf HART 5 umstellen) aus und drücken Sie die rechte Pfeiltaste. Alternativ können Sie auch einfach "3" drücken.
- 6. Wenn auf dem Display die Frage "Are you sure you want to change protocol to HART 5?" (Möchten Sie wirklich auf das Protokoll HART 5 umstellen?) angezeigt wird, drücken Sie "OK".
- 7. Geben Sie das aktive Passwort ein und drücken Sie "OK". Das Standardpasswort ist "******* (acht Sternchen).
- 8. Wenn auf dem Display die Meldung "Device is now in HART 5 mode" (Gerät befindet sich jetzt im HART-5-Modus) erscheint, drücken Sie "OK" und dann "Exit" (Beenden), um offline zu gehen und auf neue Geräte zu prüfen.
- 9. Das Gerät wird nun als Modell PR 5437 (HART5) angezeigt und steht im Onlinemenü zur Auswahl.

ACHTUNG! Nach der Umstellung auf HART 5 wird die Konfiguration auf die Werkseinstellung zurückgesetzt.

Die Schnelltastenfolge (vom Onlinemenü aus) ist: 7, 3, 6, 3, 0K, 0K, 0K, Exit.

Um das Gerät wieder auf HART 7 umzustellen, folgen Sie der obigen Anleitung und wählen Sie in Schritt 5 stattdessen Change to HART 7 (Auf HART 7 umstellen) aus.


Bei der erneuten Umstellung auf HART 7 bleibt die Konfiguration unverändert.

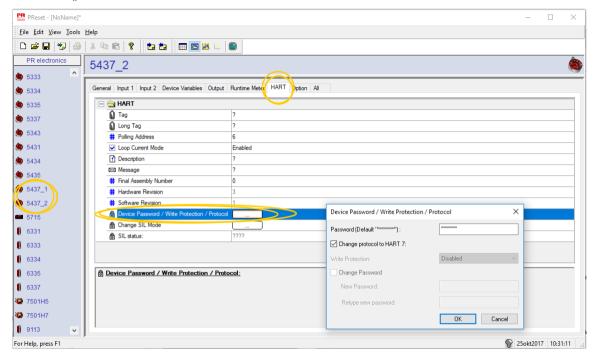
So wird der PR 5437 mithilfe PReset und der Loop-Link PR 5909 oder einer HART-Kommunikationsschnittstelle von HART 7 auf HART 5 (oder umgekehrt) umgestellt:

Umstellung von HART 7 auf HART 5

Wählen Sie den PR 5437 aus und klicken Sie auf den Reiter HART.

Klicken Sie auf **Device Password / Write Protection / Protocol...** (Gerätepasswort/Schreibschutz/Protokoll ...) und wählen Sie im Pop-up-Fenster **Change protocol to HART 5** (Protokoll auf HART 5 umstellen) aus. Bestätigen Sie dann Ihre Auswahl durch Klicken auf "OK".

Daraufhin wird folgende Meldung angezeigt:



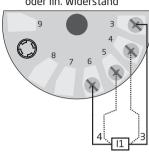
ACHTUNG! Nach der Umstellung auf HART 5 wird die Konfiguration auf die Werkseinstellung zurückgesetzt.

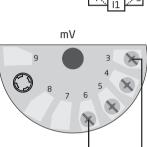
Umstellung von HART 5 auf HART 7

Wählen Sie den PR 5437 aus und klicken Sie auf den Reiter HART.

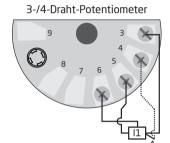
Klicken Sie auf **Device Password / Write Protection / Protocol...** (Gerätepasswort/Schreibschutz/Protokoll ...) und wählen Sie im Pop-up-Fenster **Change protocol to HART 7** (Protokoll auf HART 7 umstellen) aus. Bestätigen Sie dann Ihre Auswahl durch Klicken auf "OK".

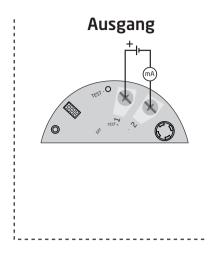
Daraufhin wird folgende Meldung angezeigt:


SIL Funktionalität

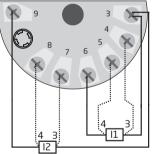

Für die Aktivierung des SIL Modus liegen weitere Anweisungen und Hinweise im Safety Manual des 5437 vor.

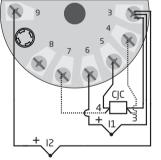
Anschlüsse


Eingangsoptionen - Einzeleingang

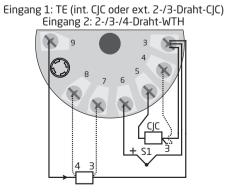

2-/3-/4-Draht-WTH oder lin. Widerstand

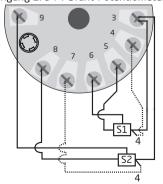
TE (int. CJC oder ext. 2-/3-Draht-CJC)



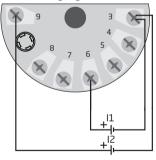

Eingangsoptionen - Dualeingang

Eingang 1: 2-/3-/4-Draht-WTH oder lin. Widerstand Eingang 2:

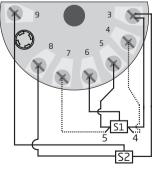

2-/3-/4-Draht-WTH oder lin. Widerstand

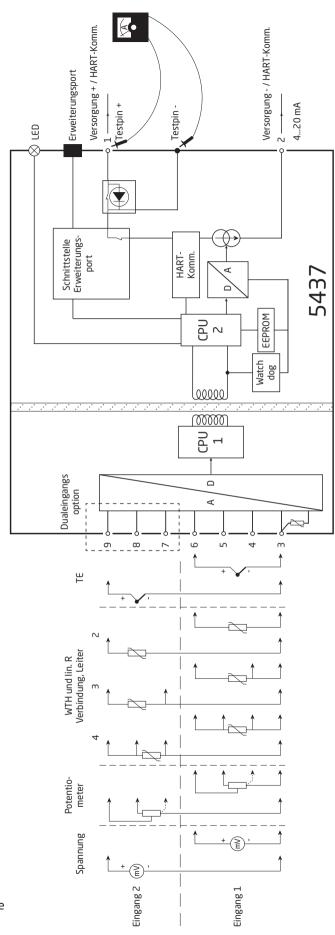


Eingang 1: TE (int. CJC oder ext. 2-/3-/4-Draht-CJC) Eingang 2: TE (int. CJC oder ext. 2-/3-/4-Draht-CJC)



Eingang 1: 3-/4-Draht-Potentiometer Eingang 2: 3-/4-Draht-Potentiometer

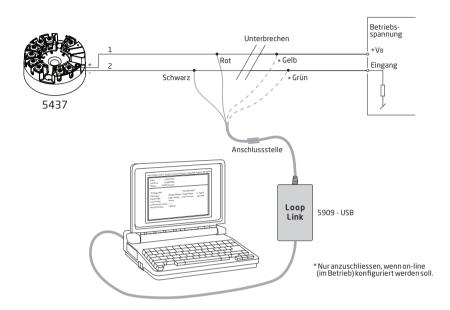



Eingang 1: mV Eingang 2: mV

Eingang 1: 5-Draht-Potentiometer Eingang 2: 3-Draht-Potentiometer

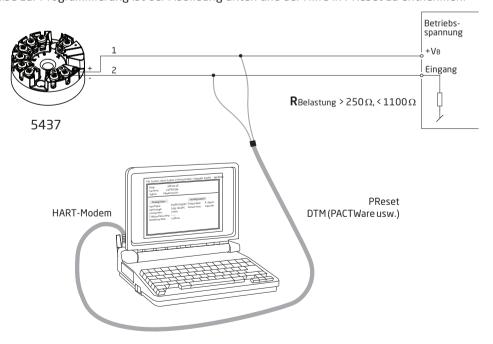
Blockdiagramm

Für vollständige Übersicht über Eingangsanschlüsse, siehe Seite 24.

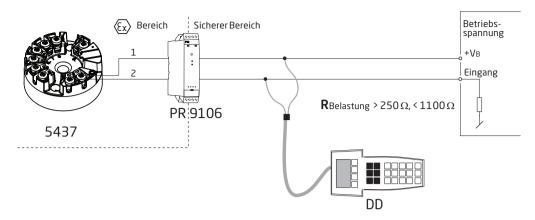

Programmierung

Es gibt 4 verschiedene Möglichkeiten, den PR 5437 zu konfigurieren:

- 1. Mit der Kommunikationsschnittstelle Loop Link und der PC-Konfigurationssoftware PReset von PR electronics A/S.
- 2. Mit einem HART-Modem und der PC-Konfigurationssoftware PReset.
- 3. Mit einem HART-Kommunikator mit DDL-Treiber von PR electronics A/S.
- 4. Über ein Programmiernetzwerk, z. B. DCS, PACTWare usw.


1: Loop Link

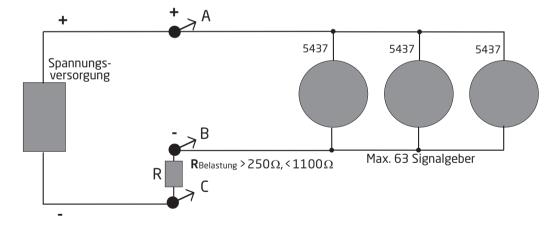
Die Vorgehensweise zur Programmierung ist der Abbildung unten und der Hilfe in PReset zu entnehmen. Loop Link ist nicht für die Kommunikation mit Geräten zugelassen, die in Gefahrenbereichen (Ex-Bereichen) installiert sind.


2: HART-Modem

Die Vorgehensweise zur Programmierung ist der Abbildung unten und der Hilfe in PReset zu entnehmen.

3: HART-Kommunikator

Zur Programmierung nutzen Sie bitte die nachfolgende Zeichnung. Um Zugriff auf produktspezifische Befehle zu erhalten, muss der Treiber 5437 DD auf den HART-Kommunikator geladen sein. Diese kann von der HART-Kommunikation Foundation oder von PR elektronisch bestellt werden.



4: Programmiernetzwerk

Unterstützung für EDD- und FDT/DTM-Technologie mit Möglichkeit der Konfiguration und Überwachung über entsprechende DCS-/Vermögensverwaltungssysteme und unterstützte Verwaltungspakete (z. B. Pactware).

Anschluss von Sendern im Multidrop-Modus

- Die Kommunikation erfolgt entweder über einen HART-Kommunikator oder ein HART-Modem.
- Der HART-Kommunikator oder das HART-Modem kann über AB oder BC angeschlossen werden.
- Die Ausgänge von maximal 63 Sendern können parallel für einen digitalen HART-Kommunikation an 2-Leitern angeschlossen werden
- Bevor sie angeschlossen werden, muss jeder Sender mit einer einmaligen Polling-Adresse von eins bis 63 konfiguriert werden. Wenn zwei Sender mit der gleichen Adresse konfiguriert werden, werden beide ausgeschlossen. Der Sender muss für den Multidrop-Modus konfiguriert sein (mit einem festen Ausgangssignal von 4 mA). Der Maximalstrom in der Schleife beträgt daher 252 mA.
- Die Konfigurationssoftware PReset kann die einzelnen Sender für den Multidrop-Modus konfigurieren und sie mit einer einmaligen Polling-Adresse ausstatten

ATEX-Installationszeichnung 5437QA01-V8R0

ATEX-Zertifikat DEKRA 16ATEX 0047X

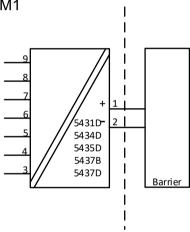
Normen: EN 60079-0:2018, EN 60079-11:2012,

EN 60079-15:2010, EN 60079-7:2015 + A1:2018

Ex ia-Installation

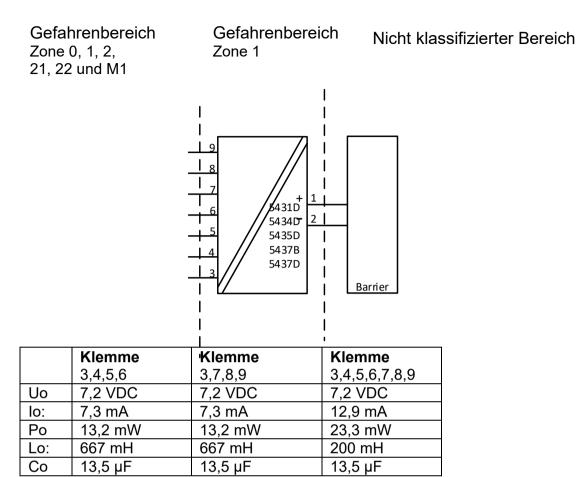
Zur sicheren Installation der Modelle 5431D..., 5434D..., 5435D..., 5437B.. und 5437D... muss Folgendes beachtet werden.

Kennzeichnung



II 1 G Ex ia IIC T6...T4 Ga or II 2(1) G Ex ib [ia Ga] IIC T6...T4 Gb II 2 D Ex ia IIIC Db I M1 Ex ia I Ma

Nicht klassifizierter Bereich


Gefahrenbereich

Zone 0, 1, 2, 21, 22 und M1

	Klemme	Klemme	Klemme
	3,4,5,6	3,7,8,9	3,4,5,6,7,8,9
Uo	7,2 VDC	7,2 VDC	7,2 VDC
lo:	7,3 mA	7,3 mA	12,9 mA
Po	13,2 mW	13,2 mW	23,3 mW
Lo:	667 mH	667 mH	200 mH
Со	13,5 µF	13,5 µF	13,5 µF

Ex ib-Installation

Klemme 1, 2	Temperaturspanne
Ex ia- und Ex ib-Installation	
Ui: 30 VDC; Ii: 120 mA; Li: 0 μH; Ci: 1,0 nF	
Pi: 900 mW	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 65°C T6: -50 ≤ Ta ≤ 50°C
Pi: 750 mW	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 70°C T6: -50 ≤ Ta ≤ 55°C
Pi: 610 mW	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 75°C T6: -50 ≤ Ta ≤ 60°C

Allgemeine Installationsanweisungen

Das Herstellungsjahr kann anhand der ersten beiden Ziffern der Seriennummer abgelesen werden.

Wenn das Gehäuse aus nichtmetallischen Kunststoffmaterialien besteht, sind elektrostatische Aufladungen des Messumformergehäuses zu vermeiden.

Für EPL Ga: Wenn das Gehäuse aus Aluminium besteht, muss es so angebracht werden, dass Zündquellen durch Reib- und Schlagfunken ausgeschlossen sind.

Der Abstand zwischen den Anschlüssen, einschließlich der freiliegenden Drähte, muss mindestens 3 mm betragen. Außerdem dürfen die Anschlüsse nicht in Kontakt mit geerdeten Metallteilen kommen.

Die Testpins ermöglichen die direkte Messung des Schleifenstroms unter Beibehaltung der Schleifenintegrität. Während der Verwendung des Testpins muss der Messumformer an eine Spannungsquelle angeschlossen sein. Bei der Installation in Gefahrenbereichen darf nur zertifizierte Testausrüstung verwendet werden

Wurde der Messumformer in der Zündschutzart Ex nA oder Ex ec eingesetzt, darf er nachträglich nicht für eigensichere Installationen verwendet werden.

Bei Installation in einer explosionsgefährdeten Gasatmosphäre sind folgende Anweisungen zu beachten:

Der Messumformer muss in einem Gehäuse der Form B nach DIN 43729 oder einem vergleichbaren Gehäuse, das mindestens Schutzart IP20 nach EN 60529 gewährleistet, montiert werden.

Das Gehäuse muss für die Anwendung geeignet und korrekt installiert sein.

Bei Installation in einer explosionsgefährdeten Staubatmosphäre sind folgende Anweisungen zu beachten:

Wenn der Messumformer in einer explosionsgefährdeten Atmosphäre installiert wird, die die Verwendung des Geräteschutzniveaus Db erfordert, muss der Messumformer in einem Gehäuse eingebaut werden, das eine Schutzart von mindestens IP5X gemäß EN 60079-0 bietet, und das für den dementsprechenden Einsatz zugelassen und korrekt eingebaut ist.

Kabeleinführungen und Blindverschraubungen müssen denselben Anforderungen genügen.

Für EPL Db: Die Oberflächentemperatur des Außengehäuses liegt +20 K über der Umgebungstemperatur, bestimmt ohne Staubschicht.

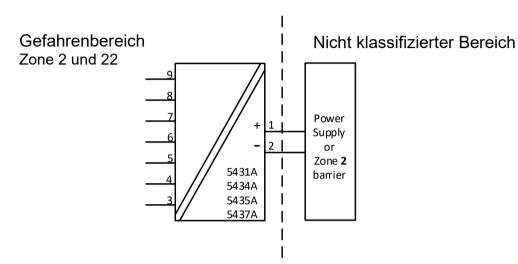
Bei Installation in Bergwerken sind folgende Anweisungen zu beachten:

Der Messumformer muss in einem Metallgehäuse, das mindestens Schutzart IP54 nach EN 60529 gewährleistet, montiert werden.

Aluminiumgehäuse sind für Bergwerke nicht zulässig.

Das Gehäuse muss für die Anwendung geeignet und korrekt installiert sein. Kabeleinführungen und Blindverschraubungen müssen denselben Anforderungen genügen.

Ex nA-/-Ex ec-/Ex ic-Installation


ATEX-Zertifikat DEKRA 18ATEX0135X

Zur sicheren Installation der Modelle 5431A..., 5434A..., 5435A... und 5437A... muss Folgendes beachtet werden.

Kennzeichnung

II 3 G Ex nA IIC T6...T4 Gc II 3 G Ex ec IIC T6...T4 Gc II 3 G Ex ic IIC T6...T4 Gc II 3 D Ex ic IIIC Dc

Klemme 1, 2 Ex nA und Ex ec	Klemme 1, 2 Ex ic	Klemme 1, 2 Ex ic	Temperaturspanne
V _{max.} = 37 VDC	Ui = 37 VDC Li = 0 μH Ci = 1,0 nF	Ui = 48 VDC Pi = 851 mW Li = 0 µH Ci = 1,0 nF	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 70°C T6: -50 ≤ Ta ≤ 55°C
V _{max.} = 30 VDC	Ui = 30 VDC Li = 0 μH Ci = 1,0 nF		T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 75°C T6: -50 ≤ Ta ≤ 60°C

Klemme	Klemme	Klemme	Klemme
3,4,5,6,7,8,9	3, 4, 5, 6	3, 7, 8, 9	3,4,5,6,7,8,9
Ex nA & Ex ec	Ex ic	Ex ic	Ex ic
Vmax = 7,2 VDC	Uo: 7,2 VDC	Uo: 7,2 VDC	Uo: 7,2 VDC
	lo: 7,3 mA	lo: 7,3 mA	lo: 12,9 mA
	Po: 13,2 mW	Po: 13,2 mW	Po: 23,3 mW
	Lo: 667 mH	Lo: 667 mH	Lo: 200 mH
	Co: 13,5µF	Co: 13,5µF	Co: 13,5µF

Allgemeine Installationsanweisungen

Wenn das Gehäuse aus nichtmetallischen Kunststoffmaterialien besteht, sind elektrostatische Aufladungen des Messumformergehäuses zu vermeiden.

Bei einer Umgebungstemperatur ≥ 60°C müssen hitzefeste Kabel verwendet werden, die für Temperaturen von mindestens 20 K über der Umgebungstemperatur ausgelegt sind.

Das Gehäuse muss für die Anwendung geeignet und korrekt installiert sein. Der Abstand zwischen den Anschlüssen, einschließlich der freiliegenden Drähte, muss mindestens 3 mm betragen. Außerdem dürfen die Anschlüsse nicht in Kontakt mit geerdeten Metallteilen kommen.

Die "TEST" -Verbindung darf nur angewendet werden, wenn der Bereich sicher ist oder wenn der Versorgungs- / Ausgangskreis und das verwendete Multimeter eigensicher sind.

Bei Installation in einer explosionsgefährdeten Gasatmosphäre sind folgende Anweisungen zu beachten:

Der Messumformer muss in einem Gehäuse montiert werden, das mindestens Schutz IP54 nach EN 60079-0 gewährleistet.

Zusätzlich muss das Gehäuse einen inneren Verschmutzungsgrad von 2 oder besser nach EN 60664-1 aufweisen.

Kabeleinführungen und Blindverschraubungen müssen denselben Anforderungen genügen.

Bei Installation in einer explosionsgefährdeten Staubatmosphäre sind folgende Anweisungen zu beachten:

Für EPL Dc: Die Oberflächentemperatur des Außengehäuses liegt +20 K über der Umgebungstemperatur, bestimmt ohne Staubschicht.

Falls der Messumformer mit einem eigensicheren "ic"-Signal geliefert wird und an ein eigensicheres "ic"-Signal (z. B. ein passives Gerät) angekoppelt werden kann, muss er in einem Metallgehäuse der Form B nach DIN 43729 oder einem vergleichbaren Gehäuse, das mindestens Schutzart IP54 nach EN 60079-0 gewährleistet, montiert werden

Kabeleinführungen und Blindverschraubungen müssen denselben Anforderungen genügen.

Wird der Messumformer in einer explosionsgefährdeten Atmosphäre installiert, die die Verwendung des Geräteschutzniveaus Gc erfordert, und in der Schutzart Ex nA oder Ex ec angewendet wird, muss der Messumformer in einem Gehäuse eingebaut werden, das eine Schutzart von mindestens IP54 gemäß EN 60079-0 bietet, und das für den dementsprechenden Einsatz zugelassen und korrekt eingebaut ist. Kabeleinführungen und Blindverschraubungen müssen denselben Anforderungen genügen.

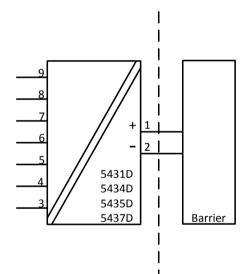
IECEx Installation drawing 5437QI01-V8R0

IECEx Certificate IECEx DEK 16.0029X

Standards: IEC 60079-0:2017, IEC 60079-11:2011,

IEC 60079-15:2010, IEC 60079-7:2017

For safe installation of the 5431D..,5434D.., 5435D.. and 5437D.. the following must be observed.

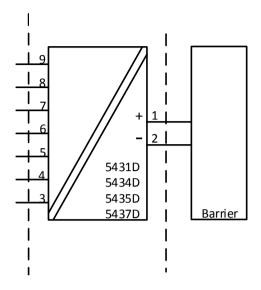

Marking Ex ia IIC T6...T4 Ga or

Ex ib [ia Ga] IIC T6...T4 Gb

Ex ia IIIC Db Ex ia I Ma

Ex ia Installation

Hazardous Area Zone 0, 1, 2, 21, 22 and M1 **Unclassified Area**



			•
	Terminal	Terminal	Terminal
	3,4,5,6	3,7,8,9	3,4,5,6,7,8,9
Uo	7.2 VDC	7.2 VDC	7.2 VDC
lo:	7.3 mA	7.3 mA	12.9 mA
Po	13.2 mW	13.2 mW	23.3 mW
Lo:	667 mH	667 mH	200 mH
Co	13.5 µF	13.5 µF	13.5 µF

Ex ib Installation

Hazardous Area Zone 0, 1, 2, 21, 22 and M1 Hazardous Area Zone 1

Unclassified Area

	Terminal 3,4,5,6	Terminal 3,7,8,9	Terminal 3,4,5,6,7,8,9
Uo	7.2 VDC	7.2 VDC	7.2 VDC
lo:	7.3 mA	7.3 mA	12.9 mA
Po	13.2 mW	13.2 mW	23.3 mW
Lo:	667 mH	667 mH	200 mH
Co	13.5 μF	13.5 μF	13.5 µF

Terminal 1,2	Temperature Range
Ex ia and Ex ib installation	
Ui: 30 VDC; Ii: 120 mA; Li: 0 μH; Ci: 1 nF	
Pi: 900 mW	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 65°C T6: -50 ≤ Ta ≤ 50°C
Pi: 750 mW	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 70°C T6: -50 ≤ Ta ≤ 55°C
Pi: 610 mW	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 75°C T6: -50 ≤ Ta ≤ 60°C

General installation instructions

If the enclosure is made of non-metallic plastic materials, electrostatic charges on the transmitter enclosure shall be avoided.

For EPL Ga, if the enclosure is made of aluminum, it must be installed such, that ignition sources due to impact and friction sparks are excluded

The distance between terminals, inclusive the wires bare part, shall be at least 3 mm separated from any earthed metal.

The test pins allow measurement of loop current directly while maintaining loop integrity. Power must be connected to the transmitter when using the test pins. For hazardous area installation, only certified test equipment may be used. If the transmitter was applied in type of protection Ex nA or Ex ec, it may afterwards

not be applied for intrinsic safety.

For installation in a potentially explosive gas atmosphere, the following instructions apply:

The transmitter shall be mounted in an enclosure form B according to DIN43729 or equivalent that is providing a degree of protection of at least IP20 according to IEC60529.

The enclosure shall be suitable for the application and correctly installed.

For installation in a potentially explosive dust atmosphere, the following instructions apply:

If the transmitter is installed in an explosive atmosphere requiring the use of equipment protection level Db or Dc and applied in type of protection Ex ia or Ex ic, the transmitter shall be mounted in enclosure that provides a degree of protection of at least IP5X according to IEC 60079-0, and that is suitable for the application and correctly installed.

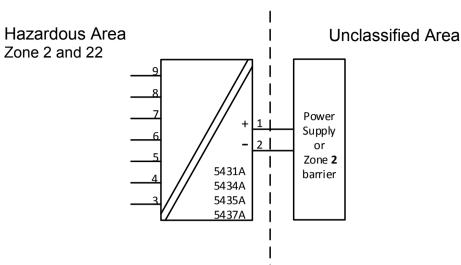
Cable entry devices and blanking elements shall fulfill the same requirements. The surface temperature of the outer enclosure is +20 K above the ambient temperature, determined without a dust layer.

For installation in mines the following instructions apply:

The transmitter shall be mounted in a metal enclosure that is providing a degree of protection of at least IP54 according to IEC60529.

Aluminum enclosures are not allowed for mines.

The enclosure shall be suitable for the application and correctly installed. Cable entry devices and blanking elements shall fulfill the same requirements.


Ex nA / Ex ec / Ex ic Installation

For safe installation of the 5431A.., 5434A.., 5435A.. and 5437A.. the following must be observed.

Marking Ex nA IIC T6...T4 Gc

Ex ec IIC T6...T4 Gc Ex ic IIC T6...T4 Gc

Ex ic IIIC Dc

Terminal 1,2	Terminal 1,2	Terminal 1,2	Temperature Range
Ex nA & ec	Ex ic	Ex ic	
Vmax= 37 VDC	Ui = 37 VDC Li = 0 μH Ci = 1.0 nF	Ui = 48 VDC Pi = 851 mW Li = 0 µH Ci = 1.0 nF	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 70°C T6: -50 ≤ Ta ≤ 55°C
Vmax= 30 VDC	Ui = 30 VDC Li = 0 μH Ci = 1.0 nF		T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 75°C T6: -50 ≤ Ta ≤ 60°C

Terminal 3,4,5,6,7,8,9	Terminal 3, 7, 8, 9	Terminal 3, 7, 8, 9	Terminal 3,4,5,6,7,8,9
Ex nA & Ex ec	Ex ic	Ex ic	Ex ic
Vmax = 7.2VDC	Uo: 7.2 VDC lo: 7.3 mA Po: 13.2 mW Lo: 667 mH Co: 13.5µF	Uo: 7.2 VDC Io: 7.3 mA Po: 13.2 mW Lo: 667 mH Co: 13.5µF	Uo: 7.2 VDC Io: 12.9 mA Po: 23.3 mW Lo: 200 mH Co: 13.5µF

General installation instructions

If the enclosure is made of non-metallic plastic materials, electrostatic charges on the transmitter enclosure shall be avoided.

For an ambient temperature ≥ 60°C, heat resistant cables shall be used with a rating of at least 20 K above the ambient temperature.

The enclosure shall be suitable for the application and correctly installed

The distance between terminals, inclusive the wires bare part, shall be at least 3 mm separated from any earthed metal.

'TEST' connection, may only be applied when the area is safe, or if supply / output circuit and the applied current meter are intrinsically safe.

For installation in a potentially explosive gas atmosphere, the following instructions apply:

The transmitter shall be installed in an enclosure providing a degree of protection of not less than IP54 in accordance with IEC 60079-0, which is suitable for the application and correctly installed e.g. in an enclosure that is in type of protection Ex n or Ex e. Additionally, the area inside the enclosure shall be pollution degree 2 or better as defined in IEC 60664-1.

Cable entry devices and blanking elements shall fulfill the same requirements.

For installation in a potentially explosive dust atmosphere, the following instructions apply:

For EPL Dc, the surface temperature of the outer enclosure is +20 K above the ambient temperature, determined without a dust layer.

If the transmitter is supplied with an intrinsically safe signal "ic" and interfaces an intrinsically safe signal "ic" (e.g. a passive device), the transmitter shall be mounted in a metal enclosure form B according to DIN 43729 or equivalent that provides a degree of protection of at least IP54 according to IEC 60079-0.

Cable entry devices and blanking elements shall fulfill the same requirements.

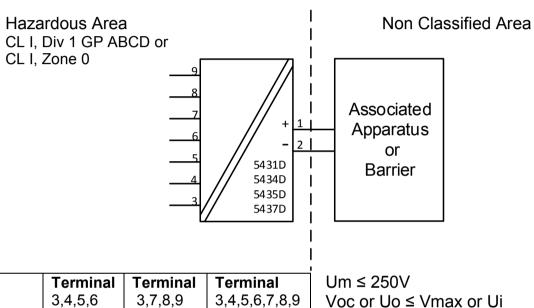
If the transmitter is installed in an explosive atmosphere requiring the use of equipment protection level Gc and applied in type of protection Ex nA or Ex ec, the transmitter shall be mounted in enclosure that provides a degree of protection of at least IP54 according to IEC 60079-0, and that is suitable for the application and correctly installed. Cable entry devices and blanking elements shall fulfill the same requirements.

CSA Installation drawing 5437QC01-V6R0

CSA Certificate 16.70066266

Division1 / Ex ia, Intrinsic Safe Installation

For safe installation of the 5431D..,5434D.., 5435D.. and 5437D.. the following must be Observed.


Marking Class I Division 1, Group A,B,C,D

Ex ia IIC T6...T4 Ga

Class I, Zone 0: AEx ia IIC T6...T4 Ga

Ex ib [ia Ga] IIC T6...T4 Gb

Class I Zone 1 AEx ib [ia Ga] IIC T6...T4 Gb

	Terminal	Terminal	Terminal
	3,4,5,6	3,7,8,9	3,4,5,6,7,8,9
Uo	7.2 VDC	7.2 VDC	7.2 VDC
lo:	7.3 mA	7.3 mA	12.9 mA
Po	13.2 mW	13.2 mW	23.3 mW
Lo:	667 mH	667 mH	200 mH
Co	13.5 μF	13.5 µF	13.5 μF

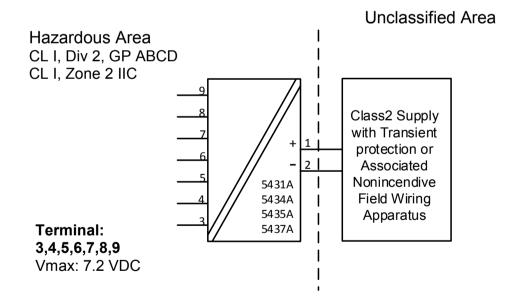
Voc or Uo ≤ Vmax or Ui Isc or Io ≤ Imax or Ii Po ≤ Pmax or Pi Ca or Co ≥ Ci + Ccable La or Lo ≥ Li + Lcable

Terminal 1,2 Ex ia, Div1	Temperature Range
Pi: 900 mW Ui: 30 VDC; Ii: 120 mA Li:0 μH; Ci:1.0nF	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 70°C T6: -50 ≤ Ta ≤ 55°C
Pi: 750 mW Ui: 30 VDC; Ii: 100 mA Li:0 μH; Ci:1.0nF	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 75°C T6: -50 ≤ Ta ≤ 60°C

IS Installation instructions

- Install in accordance with the US the National Electrical Code (NEC) or for Canada the Canadian Electrical Code (CEC).
- The transmitter must be installed in a suitable enclosure to meet installation codes stipulated in the Canadian Electrical Code (CEC) or for US the National Electrical Code (NEC).
- To establish Class II and Class III, Division 1 or IIIC ratings, the equipment shall be installed in an enclosure that is approved for use in Class II and Class III hazardous (classified) locations.
- If the enclosure is made of non-metallic materials or of painted metal, electrostatic charging shall be avoided.
- Use supply wires with a rating of at least 5 K above the ambient temperature.

WARNING: Substitution of components may impair intrinsic safety AVERTISSEMENT: la substitution de composants peut nuire à la sécurité intrinsèque


Division 2 / Ex ec, Installation

For safe installation of the 5431A.., 5434A.., 5435A.. and 5437A.. the following must be observed.

Marking Class I, Division 2, Groups A, B, C, D

Ex ec IIC T6...T4 Gc

Class I, Zone 2: AEx ec IIC T6...T4 Gc

Terminal 1,2	
Ex ec	Temperature Range
Supply voltage: max 37 VDC	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 70°C T6: -50 ≤ Ta ≤ 55°C
Supply voltage: max 30 VDC	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 75°C T6: -50 ≤ Ta ≤ 60°C

NI Installation instructions

- The transmitter must be installed in an enclosure providing a degree of protection of at least IP54 according to IEC60529 that is suitable for the application and is correctly installed. Cable entry devices and blanking elements shall fulfill the same requirements.
- Additionally, the area inside the enclosure shall be pollution degree 2 or better as defined in IEC 60664-1.
- If the enclosure is made of non-metallic materials or of painted metal, electrostatic charging shall be avoided.
- Use supply wires with a rating of at least 5 K above the ambient temperature.
- For an ambient temperature ≥ 60°C, heat resistant cables shall be used with a rating of at least 20 K above the ambient temperature.

WARNING: Substitution of components may impair suitability for Class I, Division 2 AVERTISSEMENT: la substitution de composants peut nuire à l'aptitude à la Classe I, Division 2

WARNING: Do not connect or disconnect equipment unless power has been switched off or the area is known to be safe.

AVERTISSEMENT: Ne connectez ou ne débranchez pas l'équipement sauf si l'alimentation a été coupée ou si la zone est connue pour être sûre.

Non Incendive field wiring installation

The non incendive field Wiring Circuit concept allows interconnection of Nonincendive Field wiring Apparatus with Associated Nonincendive Field Wiring Apparatus or Assosicated Intrinsically Safe Apparatus or Associated Apparatus not specially examined in combination as a system using any of the wiring methods permitted for unclassified locations, Voc < Vmax, $Ca \ge Ci + Ccable$, $La \ge Li + Lcable$.

Terminal 1,2	Temperature Range
Non Incendive Field wiring parameters	
Vmax= 30 VDC, Ci=1nF, Li=0	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 75°C T6: -50 ≤ Ta ≤ 60°C

Functional Ratings: Unom ≤ 30 VDC; Inom ≤ 3.5 - 23 mA

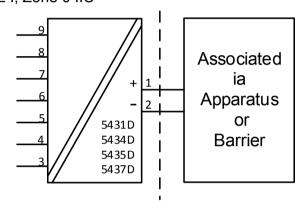
FM Installation drawing 5437QF01-V6R0

FM Certificates FM16CA0146X and FM16US0287X

Division1 / Zone 0, Intrinsic Safe Installation

For safe installation of the 5431D...,5434D..., 5435D.. and 5437D.. the following must be observed.

Marking: CL I, Div 1, Gp A,B,C,D

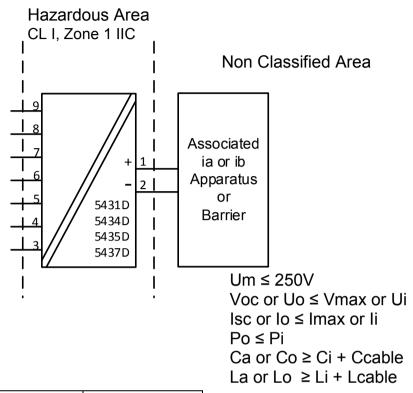

CL I, Zone 0 ÅEx ia IIC, T6...T4 CL I, Zone 1 [0] AEx ib [ia] IIC,T6...T4

Ex ia IIC, T6...T4 Ga Ex ib [ia Ga] IIC, T6...T4 Gb

Hazardous Area

CL I, Div 1, GP ABCD CL I, Zone 0 IIC

Non Classified Area


Um ≤ 250V Voc or Uo ≤ Vmax or Ui Isc or Io ≤ Imax or Ii Po ≤ Pi Ca or Co ≥ Ci + Ccable La or Lo ≥ Li + Lcable

	Terminal	Terminal	Terminal
	3,4,5,6	3,7,8,9	3,4,5,6,7,8,9
Uo	7.2 VDC	7.2 VDC	7.2 VDC
lo:	7.3 mA	7.3 mA	12.9 mA
Po	13.2 mW	13.2 mW	23.3 mW
Lo:	667 mH	667 mH	200 mH
Со	13.5 μF	13.5 μF	13.5 μF

Terminal 1,2	Temperature Range
AEx/Ex ia IIC, T6T4 Ga; CL I, Div 1, Gp ABCD, T6T4;	
Ui: 30 VDC; Ii: 120 mA Pi: 900 mW Li:0 μH; Ci:1.0nF	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 70°C T6: -50 ≤ Ta ≤ 55°C
Ui: 30 VDC; Ii: 100 mA Pi: 750 mW Li:0 μH; Ci:1.0nF	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 75°C T6: -50 ≤ Ta ≤ 60°C

Zone 0 / Zone 1, Intrinsic Safe Installation

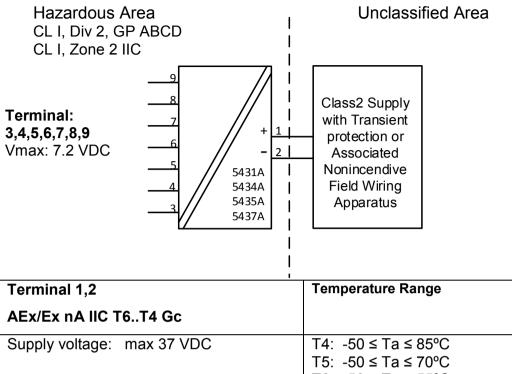
Hazardous Area CL I, Zone 0 IIC

	Terminal 3,4,5,6	Terminal 3,7,8,9	Terminal 3,4,5,6,7,8,9
Uo	7.2 VDC	7.2 VDC	7.2 VDC
lo:	7.3 mA	7.3 mA	12.9 mA
Po	13.2 mW	13.2 mW	23.3 mW
Lo:	667 mH	667 mH	200 mH
Со	13.5 μF	13.5 µF	13.5 μF

Terminal 1,2	Temperature Range
Ex ib [ia Ga] IIC T6T4 Gb;	
Ui: 30 VDC; Ii: 120 mA Pi: 900 mW Li:0 µH; Ci:1.0nF	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 70°C T6: -50 ≤ Ta ≤ 55°C
Ui: 30 VDC; Ii: 100 mA Pi: 750 mW Li:0 µH; Ci:1.0nF	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 75°C T6: -50 ≤ Ta ≤ 60°C

IS installation instructions

- Install in accordance with the US the National Electrical Code (NEC) or for Canada the Canadian Electrical Code (CEC).
- Equipment that is FM-approved for intrinsic safety may be connected to barriers based on the ENTITY CONCEPT. This concept permits interconnection of approved transmitters, meters and other devices in combinations which have not been specifically examined by FM, provided that the agency's criteria are met. The combination is then intrinsically safe, if the entity concept is acceptable to the authority having jurisdiction over the installation.
- The entity concept criteria are as follows:
 The intrinsically safe devices, other than barriers, must not be a source of power.
 The maximum voltage Ui (Vmax) and current Ii (Imax), and maximum power Pi (Pmax), which the device can receive and remain intrinsically safe, must be equal to or greater than the voltage (Uo or Voc or Vt) and current (Io or Isc or It) and the power Po which can be delivered by the barrier.
- The sum of the maximum unprotected capacitance (Ci) for each intrinsically device and the interconnect-ing wiring must be less than the capacitance (Ca) which can be safely connected to the barrier.
- The sum of the maximum unprotected inductance (Li) for each intrinsically device and the interconnecting wiring must be less than the inductance (La) which can be safely connected to the barrier.
- The entity parameters Uo, Voc or Vt and Io, Isc or It, and Ca and La for barriers are provided by the barrier manufacturer.
- The transmitter must be installed in a suitable enclosure to meet installation codes stipulated in the Canadian Electrical Code (CEC) or for US the National Electrical Code (NEC).
- If the enclosure is made of non-metallic materials or of painted metal, electrostatic charging shall be avoided.
- Use supply wires with a rating of at least 5 K above the ambient temperature.


WARNING: Substitution of components may impair intrinsic safety AVERTISSEMENT: la substitution de composants peut nuire à la sécurité intrinsèque

Division 2 / Zone 2, Non Sparking Installation

For safe installation of the 5431A.., 5434A.., 5435A.. and 5437A.. the following must be observed.

Marking Class I, Division 2, GP A,B,C,D T6...T4

Class I, Zone 2 AEx nA IIC, T6...T4 Gc Class I, Zone 2 Ex nA IIC, T6...T4 Gc NIFW, CL I, Div 2, GP A,B,C,D

ALX/LX IIA IIO 1014 GC	
Supply voltage: max 37 VDC	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 70°C T6: -50 ≤ Ta ≤ 55°C
Supply voltage: max 30 VDC	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 75°C T6: -50 ≤ Ta ≤ 60°C

NI Installation instructions

- The transmitter must be installed in an enclosure providing a degree of protection of at least IP54 according to IEC60529 that is suitable for the application and is correctly installed. Cable entry devices and blanking elements shall fulfill the same requirements.
- If the enclosure is made of non-metallic materials or of painted metal, electrostatic charging shall be avoided.
- Use supply wires with a rating of at least 5 K above the ambient temperature.

WARNING: Substitution of components may impair suitability for Class I, Division 2 AVERTISSEMENT: la substitution de composants peut nuire à la sécurité intrinsèque

WARNING: Do not disconnect equipment unless power has been switched off or the area is known to be safe.

AVERTISSEMENT: Ne débranchez pas l'équipement sauf si l'alimentation a été coupée ou si la zone est connue pour être sûre.

Non Incendive Field Wiring installation

The non incendive field Wiring Circuit concept allows interconnection of Nonincendive Field wiring Apparatus with Associated Nonincendive Field Wiring Apparatus or Assosicated Intrinsically Safe Apparatus or Associated Apparatus not specially examined in combination as a system using any of the wiring methods permitted for unclassified locations, Voc < Vmax, $Ca \ge Ci + Ccable$, $La \ge Li + Lcable$.

Terminal 1,2	
Non Incendive Field Wiring parameters	Temperature Range
Vmax= 30 VDC, Ci=1nF, Li=0	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 75°C T6: -50 ≤ Ta ≤ 60°C

Functional Ratings:

Unom ≤ 30 VDC; Inom ≤ 3.5 - 23 mA

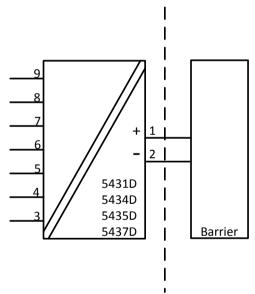
Instalação INMETRO 5437QB01-V4R1

INMETRO Certificado DEKRA 23.0002X

Normas: ABNT NBR IEC 60079-0:2020 Versão Corrigida:2023

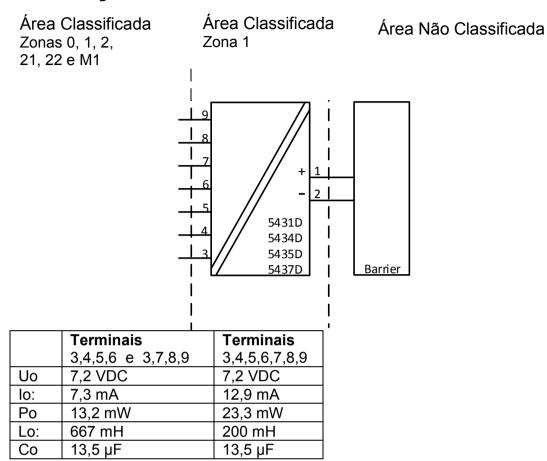
ABNT NBR IEC 60079-7:2018 Versão Corrigida:2022 ABNT NBR IEC 60079-11:2013 Versão Corrigida:2017

Para a instalação segura do 5431D..,5434D.., 5435D.. e 5437D.. os seguintes pontos devem ser observados:


NOTAS Ex ia IIC T6...T4 Ga ou

Ex ib [ia Ga] IIC T6...T4 Gb

Ex ia IIIC Db Ex ia I Ma


Instalação Ex ia

Área Classificada Zone 0, 1, 2, 21, 22 e M1 Área Não classificada

	Terminais	Terminais
	3,4,5,6 e 3,7,8,9	3,4,5,6,7,8,9
Uo	7,2 VDC	7,2 VDC
lo:	7,3 mA	12,9 mA
Po	13,2 mW	23,3 mW
Lo:	667 mH	200 mH
Со	13,5 µF	13,5 μF

Instalação Ex ib

Terminais 1,2	Faixas de Temperaturas
Instalações Ex ia e Ex ib Ui: 30 VDC; Ii: 120 mA; Li: 0 µH; Ci: 1.0nF	
Pi: 900 mW	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 65°C T6: -50 ≤ Ta ≤ 50°C
Pi: 750 mW	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 70°C T6: -50 ≤ Ta ≤ 55°C
Pi: 610 mW	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 75°C T6: -50 ≤ Ta ≤ 60°C

Instruções Gerais de Instalação

Se o invólucro for feito de materiais não metálicos ou de metal com uma camada de tinta mais espessa que 0,2 mm (grupo IIC) ou 2 mm (grupo IIB, IIA, I) ou qualquer espessura (grupo III), cargas eletrostáticas devem ser evitadas.

Para EPL Ga, se o invólucro for de alumínio, ele deve ser instalado de forma que as fontes de ignição devido a faíscas de impacto e fricção sejam excluídas.

A distância entre terminais, fios inclusivos não isolados, deve ser separada por pelo menos 3 mm de gualquer metal aterrado.

Os pinos de testes para medição devem permitir os destes de *loop* de corrente mantendo a integridade do *loop*. A energia deve estará conectada ao transmissor quando for usado os pinos de teste. Para instalações em áreas classificadas deve ser utilizado somente equipamentos certificados.

Se o transmissor foi aplicado no tipo de proteção Ex ec, não pode ser aplicado para segurança intrínseca.

Para instalações com uma atmosfera de gás potencialmente explosiva, a seguinte instrução se aplicará:

O transmissor deverá ser montado em um gabinete de formato tipo B de acordo com a norma DIN43729 ou equivalente que possibilita um grau mínimo de proteção IP20 de acordo com a ABNT NBR IEC60529.

O gabinete deve ser adequado para a aplicação e instalado corretamente.

Para instalação em uma atmosfera de poeira potencialmente explosiva, as seguintes instruções se aplicarão:

Se o transmissor for instalado em uma atmosfera explosiva que exija o uso de nível de proteção de equipamento Db ou Dc e aplicado no tipo de proteção Ex ia ou Ex ic, o transmissor deverá ser montado em gabinete que forneça um grau de proteção de pelo menos IP5X de acordo com IEC 60079-0, e que seja adequado à aplicação e instalado corretamente. Os dispositivos de entrada de cabos e os elementos de obturação devem cumprir os mesmos requisitos. A temperatura da superfície do invólucro externo é +20 K acima da temperatura ambiente, determinada sem camada de poeira.

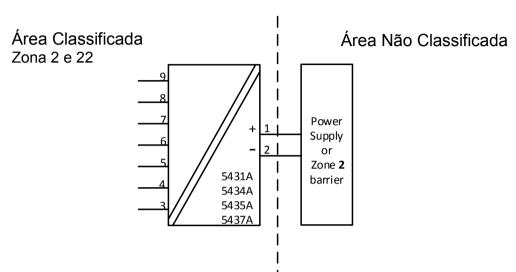
Para instalações em Minas, as instruções abaixo se aplicam:

O transmissor deverá ser montado em um gabinete de metal que possibilita um grau mínimo de proteção IP54 de acordo com a ABNT NBR IEC60529

Gabinetes de Alumínio não são permitidos para instalações em Minas.

O gabinete deve ser adequado para a aplicação e instalado corretamente.

Os dispositivos de entrada de cabos e os elementos espaçadores devem satisfazer os mesmos requisitos


Instalações Ex ec / Ex ic

Para instalações seguras do 5431A.., 5434A.., 5435A.. e 5437A.. as seguintes instruções devem ser observadas

Notas Ex ec IIC T6...T4 Gc

Ex ic IIC T6...T4 Gc

Ex ic IIIC Dc

Terminais 1,2	Terminais 1,2	Terminais 1,2	Faixa de Temperatura
Ex ec	Ex ic	Ex ic	
Vmax= 37 VDC	Ui = 37 VDC Li = 0 μH Ci = 1,0 nF	Ui = 48 VDC Pi = 851 mW Li = 0 µH Ci = 1,0 nF	T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 70°C T6: -50 ≤ Ta ≤ 55°C
Vmax= 30 VDC	Ui = 30 VDC Li = 0 µH Ci = 1,0 nF		T4: -50 ≤ Ta ≤ 85°C T5: -50 ≤ Ta ≤ 75°C T6: -50 ≤ Ta ≤ 60°C

Terminais 3,4,5,6,7,8,9	Terminais 3, 4, 5, 6 and 3, 7, 8, 9	Terminais 3,4,5,6,7,8,9
Ex ec	Ex ic	Ex ic
Vmax = 7,2VDC	Uo: 7,2 VDC Io: 7,3 mA Po: 13,2 mW Lo: 667 mH Co: 13,5µF	Uo: 7,2 VDC Io: 12,9 mA Po: 23,3 mW Lo: 200 mH Co: 13,5µF

Instruções gerais de instalação:

Se o invólucro for feito de materiais não metálicos, ou se for feito de metal com uma camada de tinta mais espessa que 0,2 mm (grupo IIC), ou 2 mm (grupo IIB, IIA, I) ou qualquer espessura (grupo III), cargas eletrostáticas devem ser evitadas.

Para uma temperatura ambiente ≥ 60°C, cabos resistentes a aquecimento deverão ser usados com classificação de no mínimo 20 K acima da temperatura ambiente.

O gabinete deve ser adequado para a aplicação e instalado corretamente.

A distância entre terminais, fios inclusivos não isolados, deve ser separada por pelo menos 3 mm de gualquer metal aterrado.

A conexão TESTE, deve ser utilizado somente quando a área é segura, ou quando a fonte / circuito de saída e o medidor de corrente aplicado seja do tipo intrinsicamente seguro.

Para instalações em uma atmosfera de gás potencialmente explosiva, as instruções abaixo e aplicarão:

O transmissor deverá ser instalado em um gabinete que possibilita um grau de proteção de no mínimo IP54 de acordo com a ABNT NBR IEC 60079-0.

Em adição, o gabinete deverá possibilitar um grau de poluição interna de 2 ou melhor, como definido na ABNT NBR IEC60664-1.

Os dispositivos de entrada de cabos e os elementos espaçadores devem satisfazer os mesmos requisitos

Para a instalação em uma atmosfera de poeira potencialmente explosiva, as seguintes instruções se aplicarão:

Para EPL Dc, a temperatura da superfície do invólucro externo é +20 K acima da temperatura ambiente, determinada sem camada de poeira. Se o transmissor for fornecido com um sinal intrinsecamente seguro "ic" e fizer interface com um sinal intrinsecamente seguro "ic" (por exemplo, um dispositivo passivo), o transmissor deverá ser montado em um invólucro metálico forma B de acordo com DIN 43729 ou equivalente que forneça um grau de proteção de pelo menos IP54 conforme IEC 60079-0. Os dispositivos de entrada de cabos e os elementos de obturação devem cumprir os mesmos requisitos.

Se o transmissor for instalado em uma atmosfera explosiva que exija o uso de nível de proteção de equipamento Gc e aplicado no tipo de proteção Ex ec, o transmissor deverá ser montado em gabinete que forneça um grau de proteção de pelo menos IP54 de acordo com IEC 60079 -0, e isso é adequado para o aplicativo e instalado corretamente. Os dispositivos de entrada de cabos e os elementos de obturação devem cumprir os mesmos requisitos.

NEPSI Installation drawing 5437QN01-V2R0

NEPSI 证书 GYJ23.1227X

防爆标志为 Ex ia IIC T4…T6 Ga

Ex ib [ia Ga] IIC T4···T6 Gb

Ex ic IIC T4···T6 Gc

Ex ec [ic Gc] IIC T4···T6 Gc

Ex ia IIIC T80°C/T95°C/T130°C Db

Ex ib [ia Da] IIIC T80°C/T95°C/T130°C Db

二、产品使用注意事项

2.1 变送器的使用环境温度范围、温度组别与安全参数的关系如下表所示:

接线端子	防爆等级	环境温度	温度组别	安全参数
		(-50~+50) ° C (-50~+65) ° C (-50~+85) ° C	T6/T80° C T5/T95° C T4/T130° C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	ia, ib iaDb ibDb	(-50 [~] +55) ° C (-50 [~] +70) ° C (-50 [~] +85) ° C	T6/T80° C T5/T95° C T4/T130° C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 ~ 2		(-50 [~] +60) ° C (-50 [~] +75) ° C (-50 [~] +85) ° C	T6/T80° C T5/T95° C T4/T130° C	U _i =30 V
		(-50~+55) ° C (-50~+70) ° C (-50~+85) ° C	T6 T5 T4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	ic	(-50~+60) ° C (-50~+75) ° C (-50~+85) ° C	T6 T5 T4	U_i =30 V L_i \approx 0 C_i =1 nF
1 ~ 2		$(-50^{\sim}+55)^{\circ}$ C $(-50^{\sim}+70)^{\circ}$ C $(-50^{\sim}+85)^{\circ}$ C	T6 T5 T4	U _{max} =37 V
1 2	2 ec	(-50~+60) ° C (-50~+75) ° C (-50~+85) ° C	T6 T5 T4	U _{max} =30 V
3 - 4 ~ 9	,			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 - 4 ~ 6 3 - 7 ~ 9	ia, ib, ic	(-50 [~] +85)°C	T4 ~ T6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- 2.2 变送器必须与已经通过防爆认证的关联设备配套/传感器共同组成本安防爆系统方可使用于爆炸性危险场所。其系统接线必须同时遵守本产品、所配关联设备和传感器的使用说明书要求,接线端子不得接错。
- 2.3 用户不得自行更换该产品的零部件,应会同产品制造商共同解决运行中出现的故障,以杜绝损坏现象的发生。
- 2.4 用户在安装、使用和维护变送器时,须同时严格遵守产品使用说明书和下列标准:
- GB 3836.13-2021 爆炸性环境 第 13 部分: 设备的修理、检修、修复和改造
- GB 3836.15-2017 爆炸性气体环境用电气设备 第 15 部分: 危险场所电气安装(煤矿除外)
- GB 3836.16-2022 爆炸性气体环境用电气设备 第 16 部分: 电气装置的检查和维护(煤矿除外)
- GB 3836.18-2017 爆炸性环境第 18 部分: 本质安全系统
- GB 50257-2014 电气装置安装工程爆炸和火灾危险环境电气装置施工及验收规范
- GB 12476.2-2010 可燃性粉尘环境用电气设备 第2部分:选型和安装
- GB 15577-2007 粉尘防爆安全规程

Appendix A: Diagnostics overview

Incident Description	Description	LED reaction	Analog Output Reaction	NE-107 Class	User action	Error #
The device variable mapped to PV (and analog out put current) is beyond its operating limits.	Primary Value Out Of Limits	Flashing Red	Enters configured Value	Maintenance required	Reconnect or repair sensor	0
Any other device variable is beyond its operating limits.	Non-Primary Value Out Of Limits	Flashing Red	No impact	Maintenance required	Reconnect or repair sensor	1
The loop current has reached the Current Output Upper Limit (UL) or Output Lower Limit (LL) as configured with command #147, and is no longer corresponding to the PV value.	Loop Current Saturated	Flashing Red	Enters configured Value	If output range check is enabled: Failure otherwise Maintenance required	Reconnect or repair sensor	2
The analogue output current is being simulated or disabled.	Loop Current Fixed	Flashing Red	Enters configured Value	Function check	N.A.	3
The configuration has changed since this bit was last cleared (seen from same master type, Primary- or Secondary Master).	Configuration Changed	No Impact	No impact	N.A.	N.A.	6
A sensor error (broken/shorted sensor) is detected on Input 1	Primary Input 1 error	Flashing Red	Enters configured Value	If no backup input is available and mapped to PV, then failure otherwise maintenance required.	Reconnect or repair sensor	10
A sensor error (broken/shorted sensor) is detected on Input 2. This is only possible if Input type 2 is <> "None"	Primary Input 2 error (only if Input 2 is enabled)	Flashing Red	Enters configured Value	If no backup input is available and mapped to PV, then failure otherwise maintenance required.	Reconnect or repair sensor	11
A sensor error (broken/shorted sensor) is detected on the CJC measurement used for Input 1	CJC for Input 1 error (only if used)	Flashing Red	Enters configured Value	If no backup input is available and mapped to PV, then failure otherwise maintenance required.	Reconnect or repair sensor	12
A sensor error (broken/shorted sensor) is detected on the CJC measurement used for Input 2	CJC for Input 2 error (only if used)	Flashing Red	Enters configured Value	If no backup input is available and mapped to PV, then failure otherwise maintenance required.	Reconnect or repair sensor	13
The difference between measurements on Input 1 and Input 2 is outside the configured sensor drift limit	Dual Input: Sensor drift alarm (only if enabled)	Flashing Red	Enters configured Value	if sensor drift = error => failure otherwise maintenance required.	Reconnect or repair sensor	14
A sensor error (broken/shorted) is detected on the primary sensor, backup sensor is in use	Dual Input: Backup sensor OK, main sensor error	No Impact	No impact	Maintenance required	Reconnect or repair sensor	15
A sensor error (broken/shorted) is detected on the backup sensor, primary sensor only is available	Dual Input: Backup sensor error, main sensor OK	No Impact	No impact	Maintenance required	Reconnect or repair sensor	16
Configuration is temporarily invalid < 3 seconds, e.g. while downloading parameters	Configuration not supported by device	Flashing Red	Value is held (freeze)	Failure	N.A.	17

Incident Description	Description	LED reaction	Analog Output Reaction	NE-107 Class	User action	Error #
Configuration is temporary invalid > 3 seconds, e.g. if download is paused	Configuration not supported by device	Lights Red	Safe State	Failure	Correct and/or re-send the configuration	18
The device is operated outside its specified temperature range	Internal electronics temperature alarm	Flashing Red	No impact	Out of specification	Check operating temperature	19
The device is operated outside its specified temperature range in SIL mode	Internal electronics temperature alarm	Lights Red	Safe State	Failure	Check operating temperature	20
Power is applied but still too low	Minimum supply voltage not reached	Off	Safe State	Function check	Check power supply (at output terminals). If the error is persistant send in the device for repair	21
The device is transitioning to SIL mode, or have failed to do so	Attempting or failed to enter SIL mode	Lights Red	Safe State	Function check	The SIL configuration must be validated or normal operation must be re-selected	22
An unrecoverable error occurred in the internal communication to the Input CPU	Error in communication with Input CPU	Lights Red	Safe State	Failure	Reset or re-power the device. If the error is persistant send in the device for repair	23
An unrecoverable error occurred in the Input CPU	Input CPU reconfiguration failed	Lights Red	Safe State	Failure	Reset or re-power the device. If the error is persistant send in the device for repair	24
The device is operated below its specified voltage supply range	Supply voltage too low	Lights Red	Safe State	Failure	Check power supply (at output terminals). Reset or re-power the device. If the error is persistant send in the device for repair	25
The read back loop current differs from the calculated output current	Loop current read back error	Lights Red	Safe State	Failure	Check power supply (at output terminals). Reset or re-power the device. If the error is persistant send in the device for repair	26
The device is operated above its specified voltage supply range	Supply voltage too high	Lights Red	Safe State	Failure	Check power supply (at output terminals). Reset or re-power the device. If the error is persistant send in the device for repair	27
The configuration in the NVM has become inconsistent	Error in data verification after writing to EEPROM	Lights Red	Safe State	Failure	Correct and/or re-send the configuration. If the error is persistant send the device to repair	28
The configuration in the NVM has become inconsistent	CRC16 error in cyclic test of EEPROM	Lights Red	Safe State	Failure	Correct and/or re-send the configuration. If the error is persistant send the device to repair	29
An unrecoverable error occurred in the internal communication to the EEPROM	Error in EEPROM communication	Lights Red	Safe State	Failure	Reset or re-power the device. If the error is persistant send in the device for repair	30
An unrecoverable memory error occurred in the internal main CPU	CRC16 error in cyclic test of program code in FLASH	Lights Red	Safe State	Failure	Reset or re-power the device. If the error is persistant send in the device for repair	31
An exception error occurred in the main CPU program execution	Exception error during code execution	Lights Red	Safe State	Failure	Reset or re-power the device. If the error is persistant send in the device for repair	32
The main program was reset unintentionally due to a stuck up	Watchdog Reset Executed	Lights Red	Safe State	Failure	Correct and/or re-send the configuration. If the error is persistant send the device to repair	33
Sensor error is detected on the internal temperature sensor	Internal RTD sensor error	Lights Red	Safe State	Failure	Reset or re-power the device. If the error is persistant send in the device for repair	34
An unrecoverable memory error occurred in the internal main CPU	CRC16 error in cyclic test of safe-domain RAM contents	Lights Red	Safe State	Failure	Reset or re-power the device. If the error is persistant send in the device for repair	35

Incident Description	Description	LED reaction	Analog Output Reaction	NE-107 Class	User action	Error #
An exception error occurred in the main CPU program execution	Stack integrity error	Lights Red	Safe State	Failure	Reset or re-power the device. If the error is persistant send in the device for repair	36
An unrecoverable memory error occurred in the internal main CPU	CRC16 error in factory data in FLASH	Lights Red	Safe State	Failure	Reset or re-power the device. If the error is persistant send in the device for repair	37
An unrecoverable memory error occurred in the internal main CPU	RAM cell error	Lights Red	Safe State	Failure	Reset or re-power the device. If the error is persistant send in the device for repair	38
An unrecoverable memory error occurred in the internal main CPU	Safe domain RAM integrity error	Lights Red	Safe State	Failure	Reset or re-power the device. If the error is persistant send in the device for repair	39
An unrecoverable memory error occurred in the internal input CPU	CRC16 error in input CPU configuration	Lights Red	Safe State	Failure	Reset or re-power the device. If the error is persistant send in the device for repair	40
A critical measurement error is detected on internal voltage reference	Drift error, reference voltage FVR	Flashing Red	Safe State	Failure	Reconnect or repair sensor. If the error is persistant send in the device for repair	41
A critical measurement error is detected on internal voltage reference	Drift error, reference voltage VREF	Flashing Red	Safe State	Failure	Reconnect or repair sensor. If the error is persistant send in the device for repair	42
A critical measurement error is detected on Input 1	Drift error, primary Input 1	Flashing Red	Safe State	Failure	Reconnect or repair sensor. If the error is persistant send in the device for repair	43
A critical measurement error is detected on Input 2	Drift error, primary Input 2	Flashing Red	Safe State	Failure	Reconnect or repair sensor. If the error is persistant send in the device for repair	44
A critical measurement error is detected on the ground measurement	Drift error, ground voltage offset to terminal 3	Flashing Red	Safe State	Failure	Reconnect or repair sensor. If the error is persistant send in the device for repair	45
The device is in simulation mode and one or more of its Device Variables are not representative of the process	Device Variable Simulation Active	No Impact	No impact	N.A.	N.A.	46

Dokumentenverlauf

Die folgende Liste enthält Anmerkungen zum Versionsverlauf dieses Dokuments.

Rev. ID	Date	Notes
101	1817	Erstveröffentlichung des Produkts.
102	1908	Marine-Zulassung erhalten.
		Appendix A aktualisiert.
103	1924	Version 5437B hinzugefügt.
		ATEX-Installationszeichnung aktualisiert.
104	2004	Zertifikate und Installationszeichnung aktualisiert -
		ATEX, IECEx, CSA und INMETRO.
105	2018	Genauigkeitstabelle für TE- und mV-Eingänge
		aktualisiert.
		Genauigkeitsberechnungen für TC-Beispiele
		aktualisiert.
106	2240	ATEX- und IECEx-Installationszeichnungen
		aktualisiert.
		UKCA hinzugefügt.
107	2409	INMETRO- und NEPSI-Zulassungen aktualisiert - Ex
		nA in Ex ec geändert.
		Ansprechzeit von 70 ms auf 75 ms korrigiert.
108	2503	Neues EAC Ex-Zertifikat.
109	2535	ATEX-, IECEx-, CSA- und FM-
		Installationszeichnungen aktualisiert.

Wir sind weltweit in Ihrer Nähe

Globaler Support für unsere Produkte

Jedes unserer Geräte ist mit einer Gewährleistung von 5 Jahren ausgestattet. Mit jedem erworbenen Produkt erhalten Sie persönliche technische Unterstützung, 24 Stunden Lieferservice, sowie kostenfreie Reparatur innerhalb des Garantiezeitraums. sowie eine einfach zugängliche Dokumentation zur Verfügung.

PR electronics hat seinen Unternehmenshauptsitz in Dänemark sowie Niederlassungen und autorisierte Partner weltweit. Wir sind ein lokales Unternehmen mit globaler Reichweite, d. h., wir sind immer vor Ort und sehr gut mit dem jeweiligen lokalen Markt vertraut. Wir engagieren uns für Ihre Zufriedenheit und bieten weltweit INTELLIGENTE PERFORMANCE.

Weitere Informationen zu unserem Garantieprogramm oder Informationen zu einem Vertriebspartner in Ihrer Nähe finden Sie unter prelectronics.com.

Ihre Vorteile der INTELLIGENTEN PERFORMANCE

PR electronics ist eines der führenden Technologieunternehmen, das sich auf die Entwicklung und Herstellung von Produkten spezialisiert hat, die zu einer sicheren, zuverlässigen und effizienten industriellen Fertigungsprozesssteuerung beitragen. Seit der Gründung im Jahr 1974 widmet sich das Unternehmen der Weiterentwicklung seiner Kernkompetenzen, der innovativen Entwicklung von Präzisionstechnologie mit geringem Energieverbrauch. Dieses Engagement setzt auch zukünftig neue Standards für Produkte zur Kommunikation, Überwachung und Verbindung der Prozessmesspunkte unserer Kunden mit deren Prozessleitsystemen.

Unsere innovativen, patentierten Technologien resultieren aus unseren weit verzweigten Forschungseinrichtungen und aus den umfassenden Kenntnissen hinsichtlich der Anforderungen und Prozesse unserer Kunden. Wir orientieren uns an den Prinzipien Einfachheit, Fokus, Mut und Exzellenz und ermöglichen unseren Kunden besser und effizienter zu arbeiten.