Safety manual 9107 HART transparent driver

TEMPERATURE | I.S. INTERFACES | COMMUNICATION INTERFACES | MULTIFUNCTIONAL | ISOLATION | DISPLAY

6 Product Pillars to meet your every need

Individually outstanding, unrivalled in combination

With our innovative, patented technologies, we make signal conditioning smarter and simpler. Our portfolio is composed of six product areas, where we offer a wide range of analog and digital devices covering over a thousand applications in industrial and factory automation. All our products comply with or surpass the highest industry standards, ensuring reliability in even the harshest of environments and have a 5-year warranty for greater peace of mind.

Our range of temperature transmitters and sensors provides the highest level of signal integrity from the measurement point to your control system. You can convert industrial process temperature signals to analog, bus or digital communications using a highly reliable point-to-point solution with a fast response time, automatic self-calibration, sensor error detection, low drift, and top EMC performance in any environment.

We deliver the safest signals by validating our products against the toughest safety standards. Through our commitment to innovation, we have made pioneering achievements in developing I.S. interfaces with SIL 2 Full Assessment that are both efficient and cost-effective. Our comprehensive range of analog and digital intrinsically safe isolation barriers offers multifunctional inputs and outputs, making PR an easy-to-implement site standard. Our backplanes further simplify large installations and provide seamless integration to standard DCS systems.

We provide inexpensive, easy-to-use, future-ready communication interfaces that can access your PR installed base of products. All the interfaces are detachable, have a built-in display for readout of process values and diagnostics, and can be configured via push-buttons. Product specific functionality includes communication via Modbus and Bluetooth and remote access using our PR Process Supervisor (PPS) application, available for iOS and Android.

Our unique range of single devices covering multiple applications is easily deployable as your site standard. Having one variant that applies to a broad range of applications can reduce your installation time and training, and greatly simplify spare parts management at your facilities. Our devices are designed for long-term signal accuracy, low power consumption, immunity to electrical noise and simple programming.

Our compact, fast, high-quality 6 mm isolators are based on microprocessor technology to provide exceptional performance and EMC-immunity for dedicated applications at a very low total cost of ownership. They can be stacked both vertically and horizontally with no air gap separation between units required.

Our display range is characterized by its flexibility and stability. The devices meet nearly every demand for display readout of process signals and have universal input and power supply capabilities. They provide a real-time measurement of your process value no matter the industry and are engineered to provide a user-friendly and reliable relay of information, even in demanding environments.

Safety manual

HART transparent driver

9107

This safety manual is valid for the following product versions: 9107-002

1.	Observed standards	4		
2.	Acronyms and abbreviations	4		
3.	Purpose of the product			
4.	Assumptions and restrictions for use of the product			
	4.1 Basic safety specifications	5		
	4.2 Safety accuracy	5		
	4.3 Analog output	5		
	4.4 Failure rates	5		
	4.5 Installation in hazardous areas	5		
	4.6 FMEDA Report	5		
5.	Functional specification of the safety functions	6		
6.	Functional specification of the non-safety functions	6		
7.	Safety parameters	6		
8.	Hardware and software configuration	6		
9.	Failure category	6		
10.	Periodic proof test procedure	6		
11.	Procedures to repair or replace the product	6		
12.	Maintenance	6		
12	Connections diagram	7		

1. Observed standards

Standard	Description
IEC 61508	Functional Safety of electrical / electronic / programmable electronic safety-related systems
IEC 61508-2: 2010	Part 2: Requirements for electrical / electronic / programmable electronic safety-related systems

2. Acronyms and abbreviations

Acronym / Abbreviation	Designation	Description
Element		Term defined by IEC 61508 as "part of a subsystem comprising a single component or any group of components that performs one or more element safety functions".
PFD	Probability of Failure on Demand	This is the likelihood of dangerous safety function failures occurring on demand.
PFH	Probability of dangerous Failure per Hour	The term "Probability" is misleading, as IEC 61508 defines a Rate.
SFF	Safe Failure Fraction	Safe Failure Fraction summarises the fraction of failures which lead to a safe state and the fraction of failures which will be detected by diagnostic measures and lead to a defined safety action.
SIF	Safety Integrity Function	Function that provides fault detection (to ensure the necessary safety integrity for the safety functions).
SIL	Safety Integrity Level	The international standard IEC 61508 specifies four discrete safety integrity levels (SIL 1 to SIL 4). Each level corresponds to a specific probability range regarding the failure of a safety function.

3. Purpose of the product

HART Transparent, galvanic isolation of 4...20 mA current signals between hazardous area and non-classified area.

The module can be mounted in the safe area and in zone 2 / div. 2 and drive a 4...20 mA current signal into zone 0, 1, 2, 20, 21 22 and mines / Class I/II/III, Div. 1, Group. A-G.

Error events, including cable breakage, are monitored and signalled via the individual status relay and/or a collective electronic signal via the power rail.

The display and programming module 45xx can be used to show the actual process value and alter the set point for high and low limit.

The 9107 has been designed, developed and certified for use in SIL 2 applications according to the requirements of IEC 61508.

4 Version no. V2R0

4. Assumptions and restrictions for use of the product

4.1 Basic safety specifications

4.2 Safety accuracy

The analog output corresponds to the applied input within the safety accuracy.

4.3 Analog output

The connected Safety Valve, Safety PLC or other safety device shall be able to detect and handle the fault indications from the analog output of the 9107 Driver by having a NAMUR NE43-compliant input circuit.

4.4 Failure rates

The basic failure rates from the Siemens standard SN 29500 are used as the failure rate database.

Failure rates are constant, wear-out mechanisms are not included.

External power supply failure rates are not included.

4.5 Installation in hazardous areas

The IECEx Installation drawing, ATEX Installation drawing and FM Installation drawing shall be followed if the products are installed in or connected to hazardous areas.

4.6 FMEDA Report

The FMEDA report "PR 9106-9107 06-03-19 R025 FMEDA V2 R1" is issued by exida.

The report can be downloaded from the PR website www.prelectronics.com.

It is easily found by entering 9107 in the search field. From the results, open the corresponding link e.g. "9107B HART transparent driver" and locate the FMEDA report in the Supplementary documentation folder to the right.

5. Functional specification of the safety functions

Galvanic isolation of an active or passive 4...20 mA current signal from hazardous areas to an active or passive 4...20 mA output signal in non-classified area or zone 2 / Div. 2, within the specified accuracy.

The two channels on the device shall not be used in the same safety function, e.g. to increase the hardware fault tolerance of the device (to achieve a higher SIL), as they contain common components. The two channels may be used in separate safety instrumented functions if due regard is given to common cause failures.

An undetected dangerous failure is defined as if the output does not correspond to the applied input within ±2% accuracy, and is not in safe state, while operating in SIL mode.

6. Functional specification of the non-safety functions

The status relay (terminal 33 and 34), error signal on power rail (terminal 91) and LED outputs are not suitable for use in any Safety Instrumented Function. The display value and any possible parameterisation by the 45xx add-on module does not affect the safety function of the 9107.

Also the HART transparency of the module is not a safety function.

7. Safety parameters

All figures for probability of failures are specified in the FMEDA report issued by Exida, see section 4.6.

Demand rate	Note ¹
Mean Time To Repair (MTTR)	24 hours
Component Type	A (HFT=0), see note ²
SIL capability	SIL 2
Description of the "Safe State"	Output ≤ 3.6 mA or Output ≥ 21 mA

Note¹: Depends on detection time in external controller. If detection time is xx seconds, the Demand Rate shall be 100 times xx seconds.

Note²: Simple device (type A) where microprocessors and software have no effect on safety output.

8. Hardware and software configuration

All configurations of software and hardware versions are fixed from factory, and cannot be changed by end-user or reseller. This manual only covers products labelled with the product version (or range of versions) specified on the front page.

9. Failure category

All failure rates and failure categories are specified in the FMEDA report issued by exida, see section 4.6.

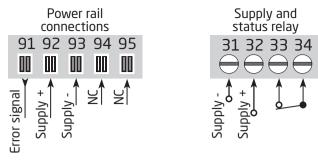
10. Periodic proof test procedure

Step	Action		
1	Bypass the safety Valve or other and take other appropriate action to avoid a false trip		
2	Connect a simulator identical to the input setup		
3	Apply input value corresponding to 0/100% output range to each channel		
4	Observe whether the output channel acts as expected		
5	Restore the input / output terminals to full operation		
6	Remove the bypass from the safety Valve or other and restore normal operation		

This test will detect approximately 95% of possible "du" (dangerous undetected) failures in the module.

11. Procedures to repair or replace the product

Any failures that are detected and that compromise functional safety should be reported to the sales department at PR electronics A/S.

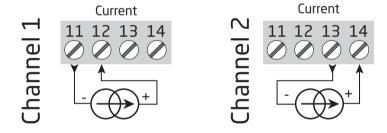

Repair of the module and replacement of circuit breakers must be done by PR electronics A/S only.

12. Maintenance

No maintenance required.

6 Version no. V2R0

13. Connections diagram



NC = no connection

Outputs:

Inputs:

We are near you, all over the world

Our trusted red boxes are supported wherever you are

All our devices are backed by expert service and a 5-year warranty. With each product you purchase, you receive personal technical support and guidance, day-to-day delivery, repair without charge within the warranty period and easily accessible documentation.

We are headquartered in Denmark, and have offices and authorized partners the world over. We are a local

business with a global reach. This means that we are always nearby and know your local markets well. We are committed to your satisfaction and provide PERFORMANCE MADE SMARTER all around the world.

For more information on our warranty program, or to meet with a sales representative in your region, visit prelectronics.com.

Benefit today from PERFORMANCE MADE SMARTER

PR electronics is the leading technology company specialized in making industrial process control safer, more reliable and more efficient. Since 1974, we have been dedicated to perfecting our core competence of innovating high precision technology with low power consumption. This dedication continues to set new standards for products communicating, monitoring and connecting our customers' process measurement points to their process control systems.

Our innovative, patented technologies are derived from our extensive R&D facilities and from having a great understanding of our customers' needs and processes. We are guided by principles of simplicity, focus, courage and excellence, enabling some of the world's greatest companies to achieve PERFORMANCE MADE SMARTER.