Grundlæggende om RTD-temperaturfølere

 
En RTD-temperaturføler er en almindelig enhed til temperaturmålinger inden for en lang række industrielle applikationer. I denne artikel kigger vi på de mest almindelige typer, hvordan de fungerer, samt fordele og ulemper.

"RTD" betyder "Resistance Temperature Detector". RTD'er er typisk lavet af platin-, nikkel- eller kobber, da disse materialer alle har en positiv temperaturkoefficient. Dette betyder, at en stigning i temperaturen resulterer i en øget modstand – ændringen i modstanden anvendes til at detektere og måle temperaturændringer.

 

Platin-RTD'er

Platin-RTD'er er den mest almindeligt forekommende RTD-type i industrielle applikationer. Det skyldes, at platin har en unik korrosionsbestandighed samt en god langtidsstabilitet og kan måle et meget bredt temperaturområde (-200…+850°C).

 

Nikkel-RTD'er

Nikkel-RTD'er koster mindre end platin og har en god korrosionsbestandighed. Nikkel ældes imidlertid hurtigere og mister nøjagtighed ved højere temperaturer. Nikkel er begrænset til et temperaturområde på -80…+260°C.

 

Kobber-RTD'er

Af de 3 RTD typer har Kobber RTD'er den bedste linearitet mellem modstand og temperatur, og kobber er samtidig et prisbilligt materiale. Kobber oxiderer imidlertid ved højere temperaturer. Kobber er begrænset til et temperaturområde på -200…+260°C.

 

 

 

Sådan fremstilles RTD'er

De fleste RTD'er fremstilles på en af tre måder: trådviklede RTD'er, spoleelement-RTD'er og tyndfilm-RTD'er.

 

 

Trådviklet RTD

 

 

I en trådviklet RTD vikles en modstandstråd omkring en ikke-ledende kerne, som normalt er fremstillet af keramik. Følerproducenten tilpasser omhyggeligt modstandstrådens længde for at opnå den specificerede modstand ved 0°C. Dette kaldes “R0” modstanden.

 

Derefter monteres der tilledninger på modstandstråden, og der påføres en glas- eller keramikoverflade over tråden for at beskytte den. Når temperaturen stiger, forøges modstandstrådens længde en lille smule. Det skal sikres via designet, at modstandstråden ikke snor sig eller på anden måde deformeres ved temperaturstigninger. Det er nødvendigt, fordi mekaniske belastninger forårsager ændringer i trådens modstand.

 

RTD'er af laboratoriekvalitet, der bruges i kalibrerings- og standardlaboratorier, eliminerer denne fejlkilde ved at have modstandstråden viklet løst omkring en ikke-ledende støttekerne. Denne type RTD kan laves ekstremt nøjagtig, men er skrøbelig og uegnet til de fleste industrielle applikationer.

 

 

Spoleelement-RTD 

 

 

I en spoleelement-RTD rulles modstandstråden til små spoler, der passer løst i en keramisk form, som efterfølgende fyldes med et ikke-ledende pulver. Modstandstråden kan frit udvide sig og trække sig sammen i overensstemmelse med temperaturændringer, hvilket minimerer fejl som følge af mekanisk belastning. Pulveret forøger hastigheden på varmeoverførslen til spolerne, hvorved reaktionstiden forbedres. Spoleelement-RTD'er beskyttes normalt med et metalhylster og anvendes i industrielle applikationer.

 

 

Tyndfilm-RTD

 

 

Tyndfilm-RTD'er masseproduceres og koster mindre end de andre RTD-typer. De er mindre, og de har hurtigere reaktionstid end de andre, hvilket er ønskværdigt i mange applikationer. De fremstilles ved at afsætte en tynd bane af platin på et keramisk underlag.

 

Producenten trimmer modstanden ved 0°C ved hjælp af en laser. Tyndfilm-RTD'er er ikke så præcise som de andre typer, fordi:

 

  • R0-modstanden ikke kan justeres så præcist som ved de andre typer.
  • Det keramiske underlag og platinbelægningen udvider sig ikke helt ens. Dette skaber en deformeringsfejl ved højere temperaturer.
  • Da tyndfilm-RTD'er er mindre, skaber RTD-målestrømmen en lidt større fejl som følge af egenopvarmning i RTD'en.

 

 

RTD-resistivitetsforhold

Begrebet "modstandsforhold" beskriver den gennemsnitlige kurvehældning på temperatur i forhold til modstand efterhånden som RTD-temperaturen ændrer sig fra 0°C til +100°C. Udtrykket for modstandsforhold er:

 

(R100-R0) / R0

 

Hvor:

R100 = RTD-modstand ved 100°C.

R0 = RTD-modstand ved 0°C.

 

Modstandsforholdet påvirkes af typen af metal og renheden af metallet, der bruges til fremstilling af RTD'en. Generelt gælder, at RTD'er med en høj R0-værdi i kombination med et højt modstandsforhold er lettere at måle præcist med, men andre egenskaber for metallet, der bruges i modstandstråden har også indvirkning på RTD'ens konstruktionsbetingede nøjagtighed.

 

 

Platin-RTD'er i industrielle applikationer er normalt i overensstemmelse med IEC 60751-standarden. Disse RTD'er har et modstandsforhold på (138,5 Ω - 100 Ω) / 100 Ω = 0,385 Ω / °C. I typiske industrielle applikationer beskyttes denne type RTD ved at sætte den ind i et hylster af rustfrit stål.

 

RTD-standarder af laboratoriekvalitet benytter platin med en højere renhed, som har et højere modstandsforhold: (139,2 Ω - 100 Ω) / 100 Ω = 0,392 Ω / °C. Ved temperaturer på mere end +670°C vil metalioner, der frigives fra sonden i rustfrit stål, forurene det meget rene platin og ændre dets modstandsforhold. Derfor er disse RTD'er i stedet beskyttet med en sonde fremstillet af kvartsglas eller platin. Disse sondematerialer forbliver de samme ved høje temperaturer, hvorved RTD'en forbliver upåvirket.

 

Nikkel-RTD'er, som er i overensstemmelse med DIN 43760, har et modstandsforhold på (161,7805 Ω – 100 Ω) / 100 Ω = 0,618 Ω / °C. Nikkel-RTD'er, som oftest anvendes i USA, har et modstandsforhold på (200,64 Ω – 120 Ω) / 120 Ω = 0,672 Ω / °C (vist i ovenstående diagram).

 

Kobber-RTD'er[1] fås med R0 = 9,035 Ω or 100 Ω. Begge typer har et modstandsforhold på 0,427:

 

(12,897 Ω - 9,035 Ω) / 9,035 Ω = 0,427 Ω / °C.

(142,7 Ω – 100 Ω) / 100 Ω = 0,427 Ω / °C.

 

 

Fordele ved at bruge nikkel- eller kobber-RTD'er

Nikkel giver en høj modstand ved 0°C og har et højt modstandsforhold, hvilket gør denne følsomme RTD let at måle. Disse egenskaber minimerer desuden fejl forårsaget af tilledningsmodstand. For en RTD er den omtrentlige fejl forårsaget af tilledningsmodstand:

 

Tilledningsmodstand / (R100-R0) x 0,01

 

For eksempel:

En 2-tråds nikkel-RTD måler temperaturen i en luftkanal. Hver tilledning har en modstand på 0,25 Ω, hvilket giver en samlet tilledningsmodstand på 0,5 Ω.

 

Fejlen forårsaget af tilledningsmodstand kan derfor beregnes på følgende måde:

0,5 Ω / (161,78 – 100) x 0,01 = 0,81°C. Dette er nøjagtigt nok i mange applikationer.

 

Til sammenligning følger her tallene for en 2-tråds platin-RTD med samme tilledningsmodstand:

0,5 Ω / (138,5 – 100) x 0,01 = 1,3°C.

 

Da en nikkel-RTD er så følsom, kan en prisbillig transmitter med lav nøjagtighed anvendes til at måle RTD'en med en acceptabel nøjagtighed. Nikkel-RTD'er findes i varme-/ventilations-/airconditionanlæg og andre prisfølsomme applikationer.

 

Kobber-RTD'er har samme temperaturekspansionshastighed og elektromagnetiske hysterese som kobberviklingerne, der bruges i elmotorer og generatorer. Af disse årsager bruges kobber-RTD'er sommetider til måling af viklingstemperatur.

 

Kobber har derudover et utroligt lineært forhold mellem temperatur og modstand. Derfor er det muligt at måle et meget smalt temperaturinterval meget præcist uden supplerende linearisering.

 

For eksempel:

En Cu100-RTD danner 100 Ω modstand ved 0°C og 142,743 Ω modstand ved 100°C. En lineær ekstrapolering giver den teoretiske modstand ved 50°C: (R100 – R0)/2 + R0

 

= (142,743 – 100)/2 + 100 = 121,3715 Ω

 

Iht. offentliggjorte tabeller over modstand ift. temperatur danner RTD'en en modstand på 121,3715 Ω ved 50°C, hvilket betyder at RTD'en er funktionelt lineær ved 0…+100°C.

 

Kobbers ulinearitet bliver ikke åbenbar, medmindre der måles et bredt interval. Hvis der eksempelvis måles 0…+200°C, giver en lineær ekstrapolering den teoretiske modstand ved 100°C som (185,675 – 100) / 2 + 100 = 142,838 Ω. Iht. tabellerne er RTD-modstanden ved 100°C imidlertid 142,743 Ω.

 

Forskellen på +0,095 Ω i °C: 0,095 Ω / 0,427 Ω pr. grad = en fejl på +0,222°C.

 

RTD tolerance

De fleste følerproducenter laver platin-RTD'er med nøjagtighedsniveauer, der stemmer overens med IEC 60751 eller ASTM E1137 RTD-standarderne.

 

IEC 60751-standarden definerer fire toleranceklasser: Klasse AA, A, B, og C. ASTM E1137-standarden definerer to tolerancekvaliteter: Kvalitet A og B.

 

 

 

Vær opmærksom på, at IEC 60751 specificerer et maks. temperaturområde for hver klasse. En klasse A-føler, som er udstyret med en spoleelement-RTD, skal eksempelvis opretholde den specificerede tolerance fra -100…+450°C. Ved brug uden for dette temperaturinterval kan følernøjagtigheden ændre sig til klasse B.

 

Følere, der overholder ASTM E1137 kvalitet A- eller kvalitet B-tolerance skal opretholde den specificerede tolerance fra -200…+650°C.

 

Denne tabel viser den beregnede tolerance for hver RTD-klasse og -kvalitet. Vær opmærksom på, at klasse C RTD'er har en bred tolerance på ±6,6°C ved 600°C. De fleste industrielle applikationer kræver RTD'er med klasse B eller bedre tolerance.

 

 

Nedenstående diagram viser tolerancen for RTD'er, der stemmer overens med IEC60751. Du vil kunne se, at RTD'er er mest nøjagtige ved 0°C og udviser større fejl, efterhånden som temperaturen fjerner sig opad eller nedad fra 0°C.

 

 

 

 

Mange følerproducenter tilbyder RTD'er med tolerancer, som er bedre end klasse AA. Tolerancen på disse meget nøjagtige RTD'er beskrives normalt med en brøkdel af klasse B-tolerancen. I nedenstående diagram har en "1/5 klasse B" RTD en tolerance på bare ± (0,06 + 0,001 ǀ t ǀ) mellem -30…150 °C. Denne tolerance er fem gange bedre end en klasse B RTD.

 

 

 

Callendar Van Dusen-ligninger

Callendar van Dusen-ligningerne beskriver forholdet mellem temperatur og modstand i industrielle platin-RTD'er. Der er to Callendar van Dusen-ligninger:

 

For temperaturer < 0°C er RTD-modstanden ved en given temperatur:

Rt = R0[1 + At + Bt² + C (t - 100) t³]

 

For temperaturer ≥ 0°C er RTD-modstanden ved en given temperatur:

Rt = R0(1 + At + Bt²)

 

Koefficienterne A, B, C og α, δ, β er unikke for den enkelte RTD. Nedenstående værdier er gældende for RTD'er, der stemmer overens med IEC 60751- og ASTM E1137-standarderne:

 

A = 3,9083 x 10-3

B = -5,775 x 10-7

C = -4,183 x 10-12

α = 3,85 x 10-3 *

β = 1,5°C

δ = 0,1086

 

* “α” er "Alfa"-konstanten. Alfa er resistivitetsforhold/100:

α = (R100 – R0) / (100 x R0).

Alfa for en platin-RTD, som stemmer overens med IEC 60751, er:

(138,5 – 100) / (100 x 100)

= 0,00385

 

Nikkel-RTD'er har en alfa på:

0,672 / 100 = 0,00672.

 

Kobber-RTD'er har en alfa på:

0,427 / 100 = 0,00427.

 

RTD-karakterisering

Selv RTD'er af høj kvalitet stemmer ikke helt overens med IEC 60751 / ASTM E1137 R:T-kurven. Et kalibreringslaboratorium kan "karakterisere" en RTD for at forbedre målenøjagtigheden yderligere. Det gøres ved omhyggelig måling af RTD-modstanden ved nogle få forskellige temperaturer og efterfølgende brug af dataene til afledning af koefficienterne α, δ, β og A, B, C.

 

5437 2-tråds HART temperatur transmitter, the 5337 2-tråds transmitter med HART-protokol, og 6337 2-tråds HART-transmitter kan programmeres med disse koefficienter, hvorved transmitteren kommer til at stemme nøje overens med en karakteriseret RTD, og der opnås exceptionel målenøjagtighed.

 

Tilbage til PR vidensbibliotek


 

[1] BEMÆRK: En Cu100 RTD har en større R100-R0 og den er lettere at måle end Cu9,035 RTD'en.

 

 

Er disse oplysninger nyttige?

 

Bedøm os

(68 stemmer)